Fort Worth District Regulatory Program Proposed "50-50" Stream Mitigation Method

Introduction

- Staff recognize there is a need to provide more in-channel replacement of functions for impacted streams.
- Building on methods developed by other Districts in USACE, including Savannah, Charleston & Little Rock, we have developed a proposed "50-50" stream mitigation method that addresses needs within the Fort Worth District.
- This method would apply on evaluation side only; no changes to existing MBI's required.

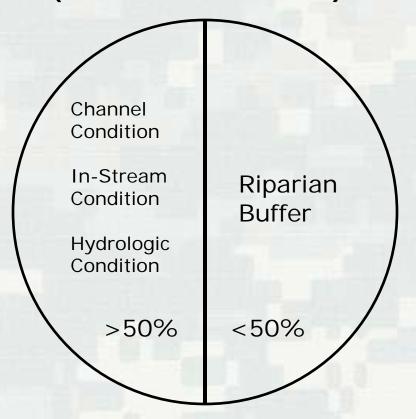
Definitions

- Riparian Buffer Credits (RBC): Credits generated from enhancement activities in stream buffer areas only. SWF banks with RBC, as of April 2013, include Fall-Off Creek MB, Patroon Bayou MB and Scoober Creek MB.
- In-Channel Credits (ICC): Credits generated from specific activities within stream channels. SWF banks with ICC, as of April 2013, include Daisy MB, Mill Branch MB, and Wilbarger Creek MB.
- Stream Credits (SC): Certain credits generated from non-riparian buffer, non-in-channel activities; not generated in newer banks. SWF "legacy" banks with these credits include: Patroon Bayou MB, Trinity River MB, South Forks Trinity River MB, Steele Creek MB, and Anderson Tract MB.

Definitions (Cont.)

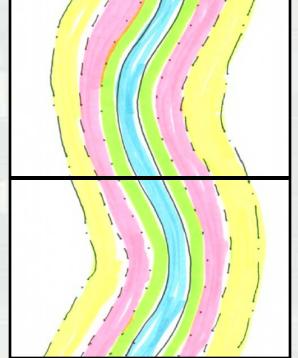
- In-Channel Work (ICW): Minimum 50% of TXRAM lift for each stream assessment reach (SAR) occurs from in-channel metrics (ie. without Riparian Buffer Condition metric included).
- In-Kind Mitigation (IKM): Perennial and intermittent stream impacts should be mitigated with in-kind replacement relative to stream type. Ephemeral stream impacts may be mitigated with either ephemeral or intermittent stream mitigation.

In Depth: In-Channel Work


	TXRAM STREAM	FINAL SCOR	NG SHEET	
Project/Site Name/No.:	Project Typ	e: Fill/Impact	☐ Linear ☐ Non-linear)	☐ Mitigation/Conservation
Stream ID/Name:	SAR No.: Siz	ze (LF):	Date: Eval	uator(s):
Stream Type:	Ecoregion:		_ Delineation Performed:	Previously Currentl
8-Digit HUC:	UC: Watershed Condition (developed, pasture, etc.):			tershed Size:
Aerial Photo Date and Source: Sit			Rep	resentative: Yes No
	Are normal climatic			
Notes:	, ao nomina omina	miyarologio oona	aone processis. El 100 El	ito (ii iio, ospiani iii riotoo
Stream Characteristics				
Stream Width (Feet)		Stream He	ight/Depth (Feet)	
Avg. Bank to Bank: Avg. Bank			<u> </u>	
			Water:	
Avg. OHWM:				
		•		
Scoring Table			Core Element Score	T
Core Element	Metric	Metric Score	Coloulation	Core Element Score
Channel condition	Floodplain connectivity		0 d	.
	Bank condition		Sum of metric scores / 15 x 25	°
	Sediment deposition			
	Riparian buffer (left bank)		Sum of bank scores / 10	
Riparian buller condition	Piperion huffer (right hank)		x 25	
In-stream condition	Substrate composition		Sum of metric scores / 10 x 25)
	In-stream habitat			
Hydrologic condition	Flow regime		Sum of metric scores / 8	
	Channel flow status		x 25	
			overall TXRAM stream scor	e
Additional points for limited I	habitats = overall TXRAM strear	m score x 0.025 f	or each bank (nght/left) if:	
	trees greater than 24-inch diame	eter at breast hei	ght	
	ast (i.e., acorns and nuts) produ			
Sum of overall TXR	AM stream score and additional	points = total ov	erall TXRAM stream scor	е
Representative Site Photog	iraph:			
	,			
[Insert Photograph]				
•				

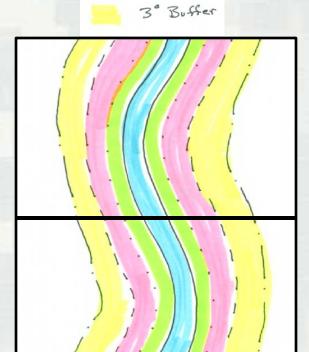
Minimum 50% of TXRAM lift for each stream assessment reach (SAR) occurs from inchannel metrics (ie. without Riparian Buffer Condition metric included) to qualify.

In Depth: In-Channel Work (Continued)



In Depth: In-Channel Work (Continued) – Generating ICW Credits

EXAMPLE

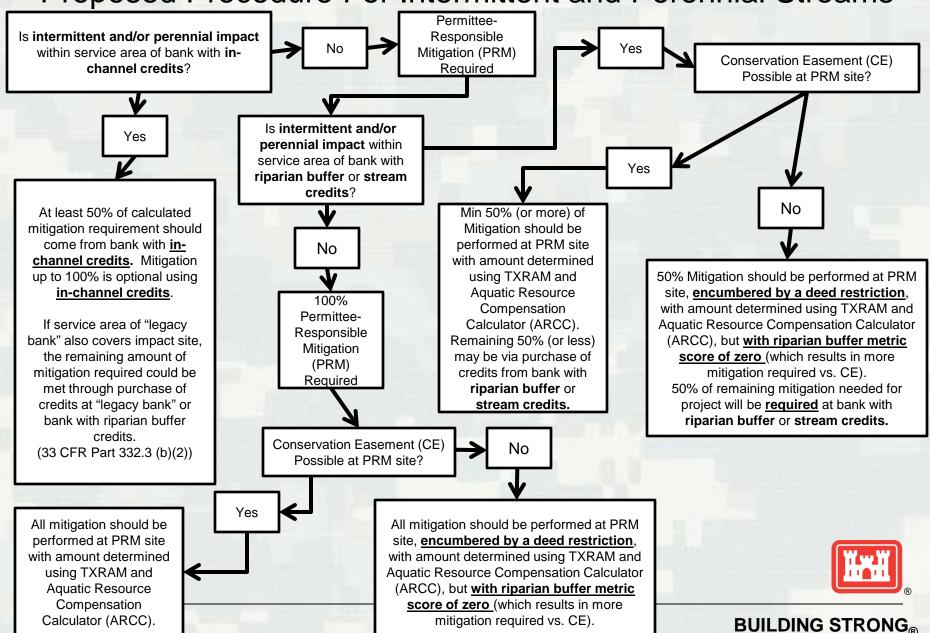


SAR 1: >50% TXRAM lift from in-channel metrics

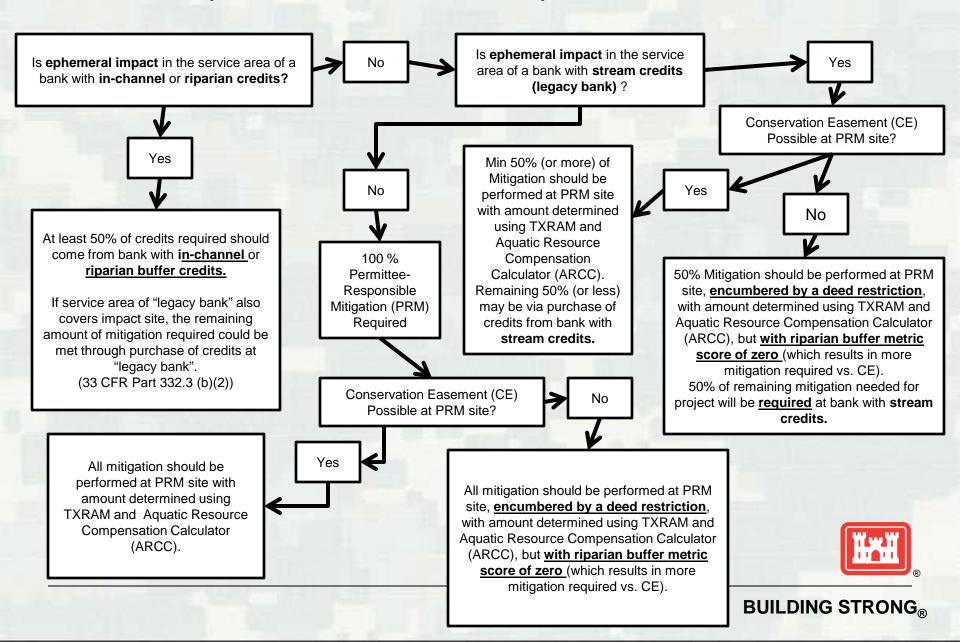
SAR 2: <50% TXRAM lift from in-channel metrics

In Depth: In-Channel Work (Continued) – Generating ICW Credits

EXAMPLE


SAR 1: ICW

Once the 50% mark of in-channel work has been reached to allow for a SAR to qualify as ICW, the riparian buffer TXRAM points generated for this SAR would also be part of the overall amount of ICW credits awarded for that reach.


SAR 2: Only Riparian Buffer Credits Generated

Proposed Procedure For Intermittent and Perennial Streams

Proposed Procedure For Ephemeral Streams

Exceptions to the 50-50 Stream Mitigation Method

In accordance with the 2008 Mitigation Rule, the USACE maintains a preference for use of mitigation banks to achieve compensatory mitigation. However, if applicants are able to clearly demonstrate to the satisfaction of the USACE that permittee responsible mitigation would result in greater ecological value, as compared to use of a mitigation bank, the USACE may allow use of permittee responsible mitigation. However, any permittee responsible mitigation permitted would be held to the same standards as those required for mitigation banks. (See 33 CFR Part 332.3 (b)(2))

Questions?

