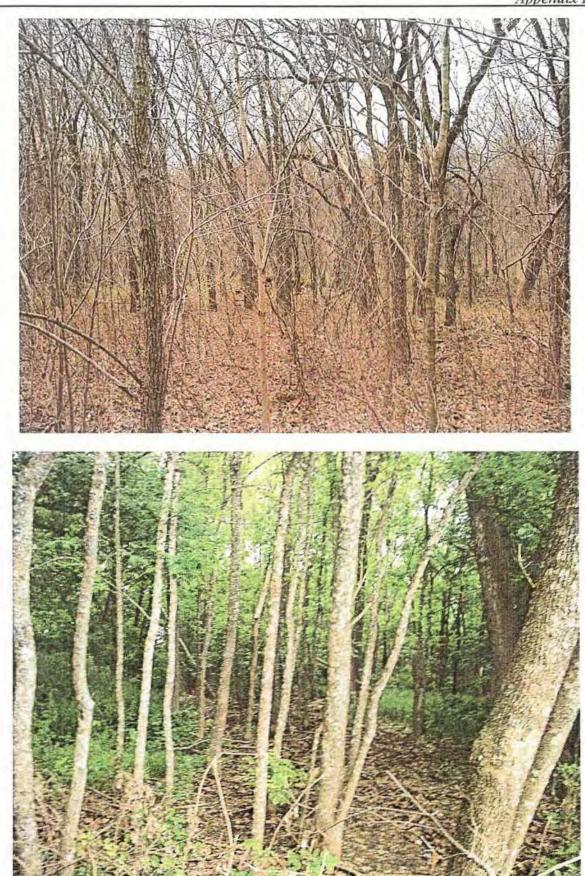
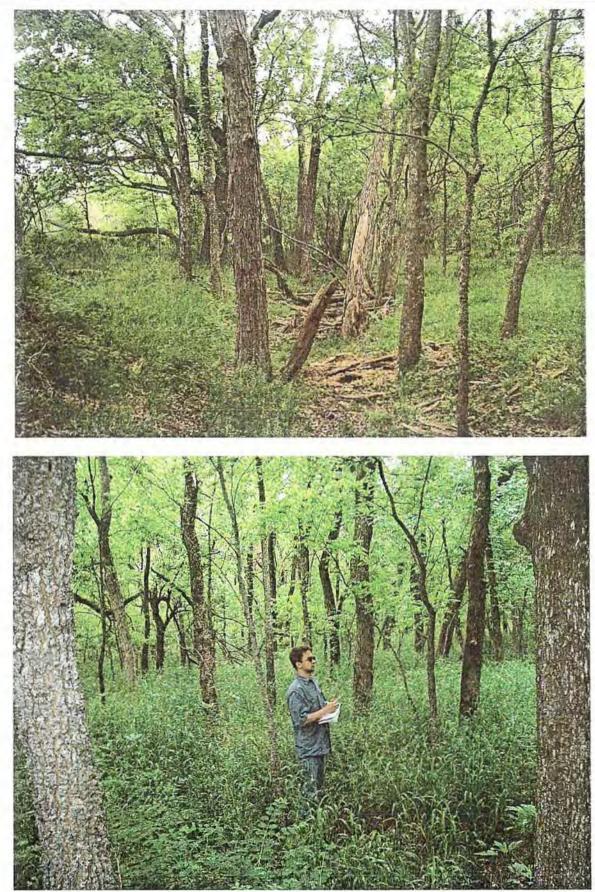
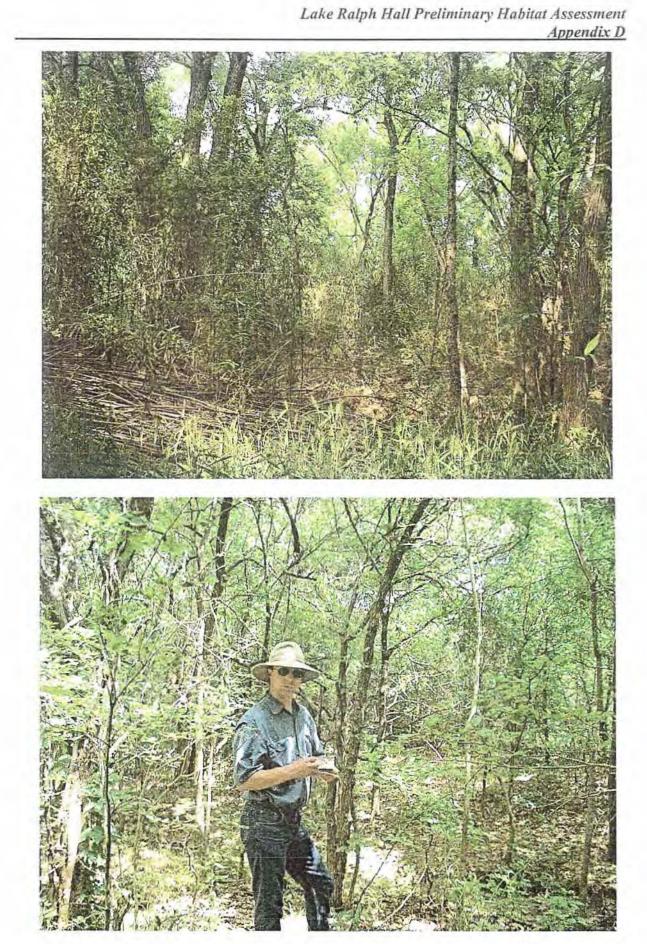



Forested area identified from 2004 aerial photograph where clearing activity had recently been conducted. Classification changed to Parks.

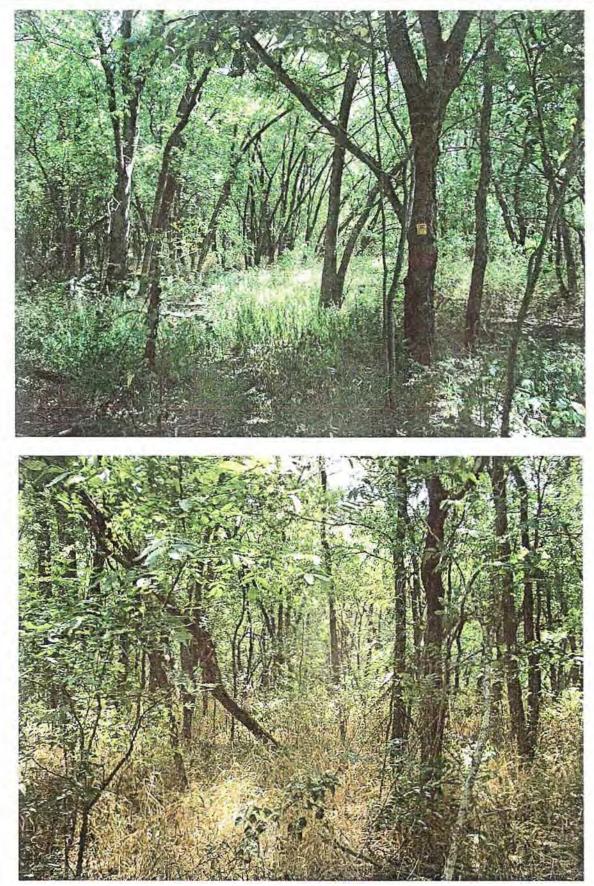

Lake Ralph Hall Preliminary Habitat Assessment Appendix D

REPRESENTATIVE PHOTOGRAPHS OF YOUNG FOREST


.



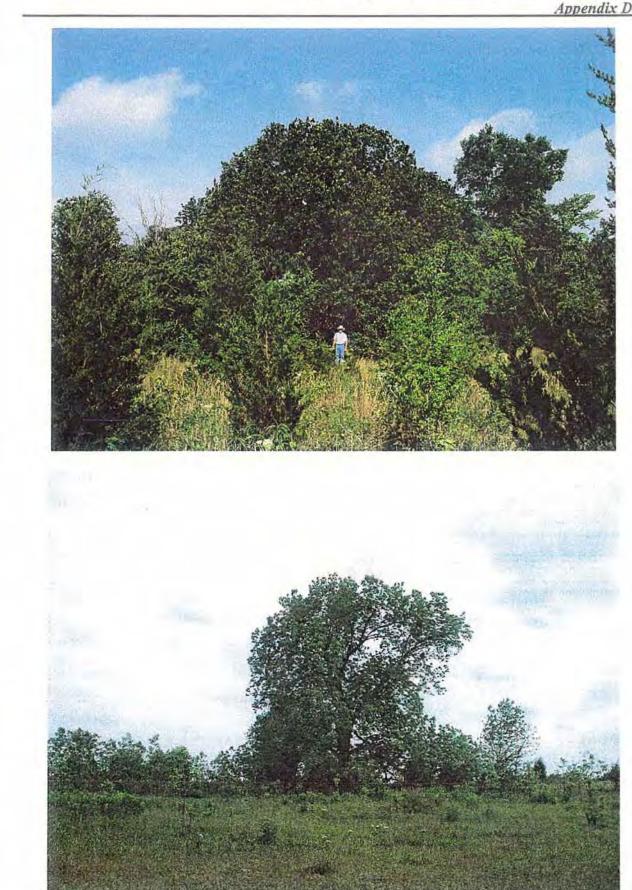

REPRESENTATIVE PHOTOGRAPHS OF YOUNG FOREST



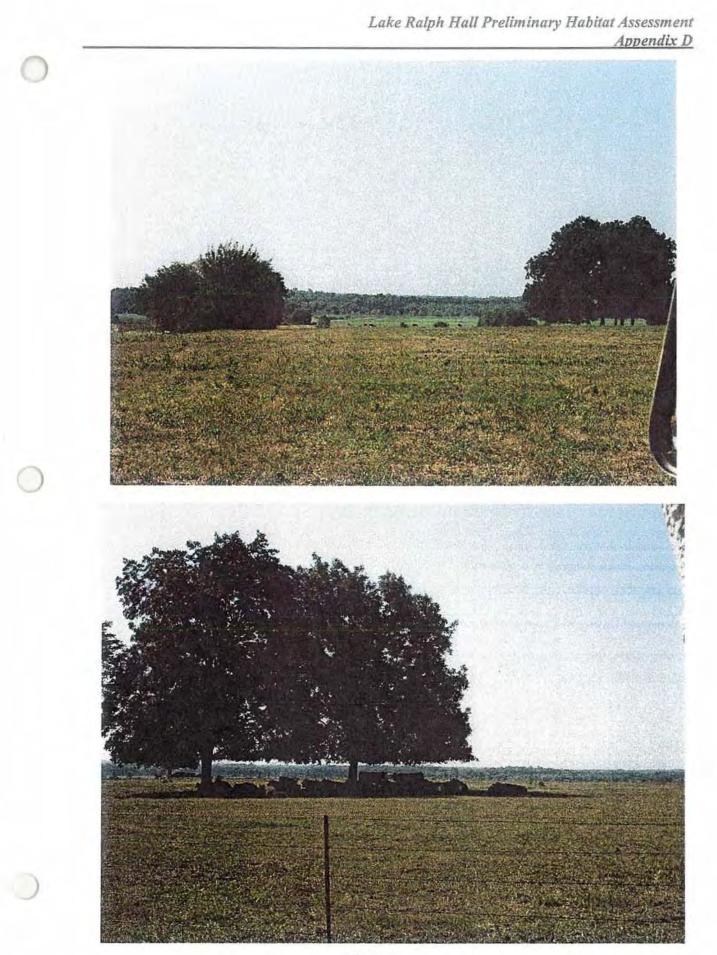

Lake Ralph Hall Preliminary Habitat Assessment Appendix D





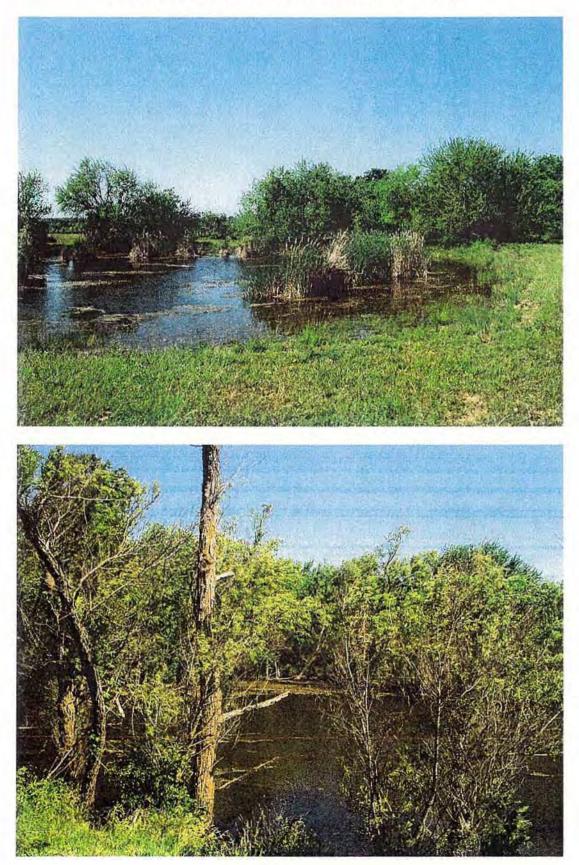

Lake Ralph Hall Preliminary Habitat Assessment Appendix D

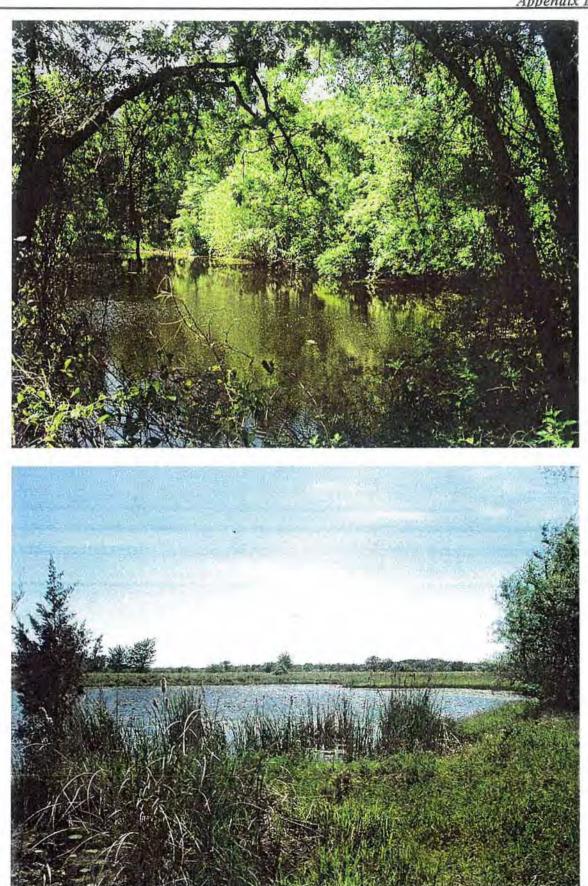



REPRESENTATIVE PHOTOGRAPHS OF PARTIALLY WOODED AREAS

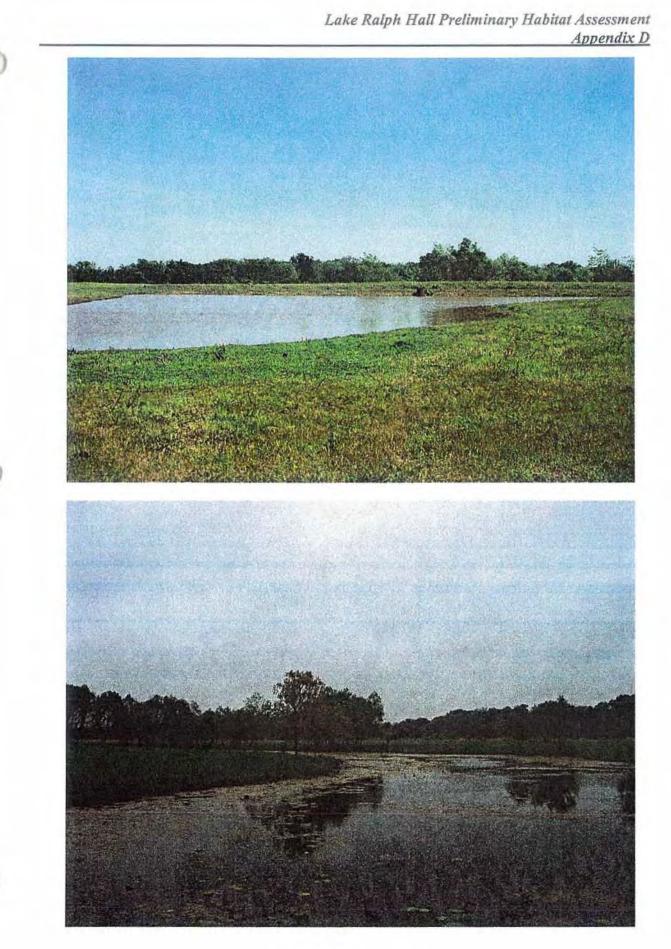


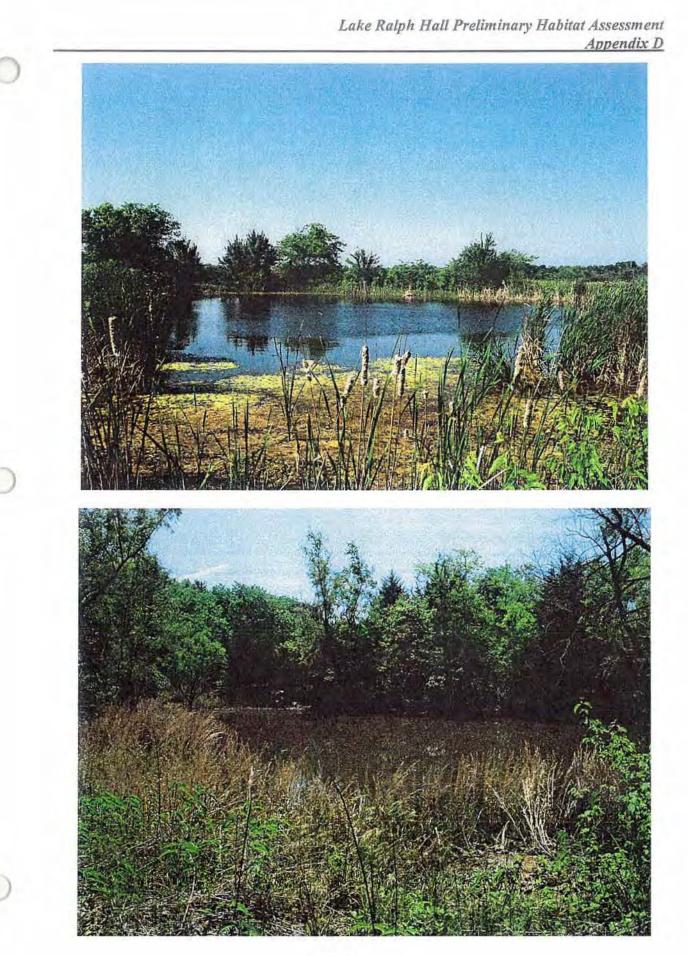
REPRESENTATIVE PHOTOGRAPHS OF PARTIALLY WOODED AREAS



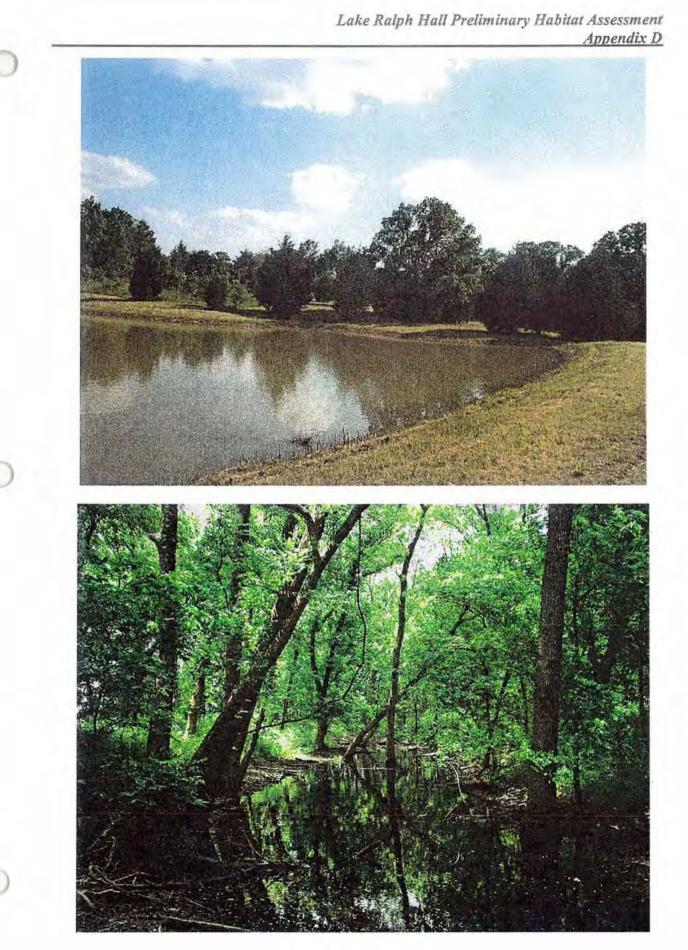


Lake Ralph Hall Preliminary Habitat Assessment Appendix D Lake Ralph Hall Preliminary Habitat Assessment Appendix D 17.74 小小的这

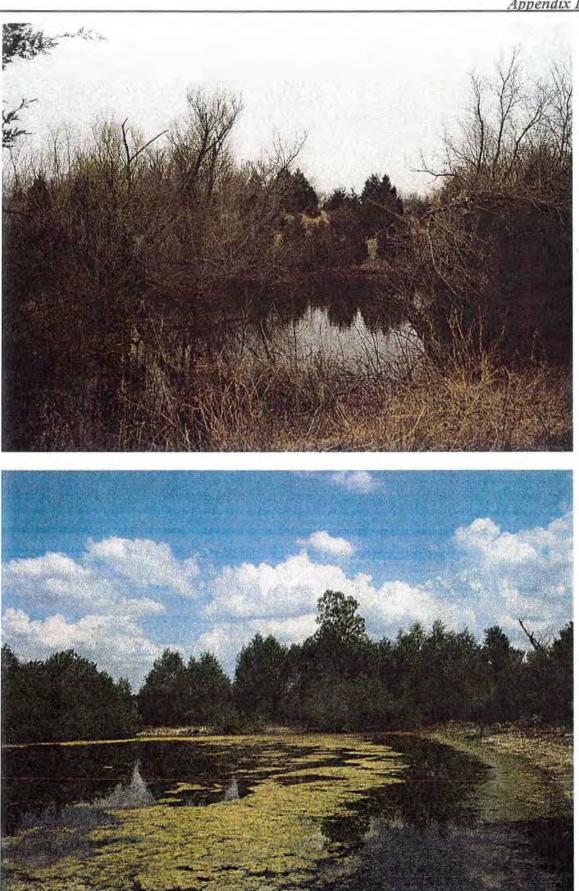


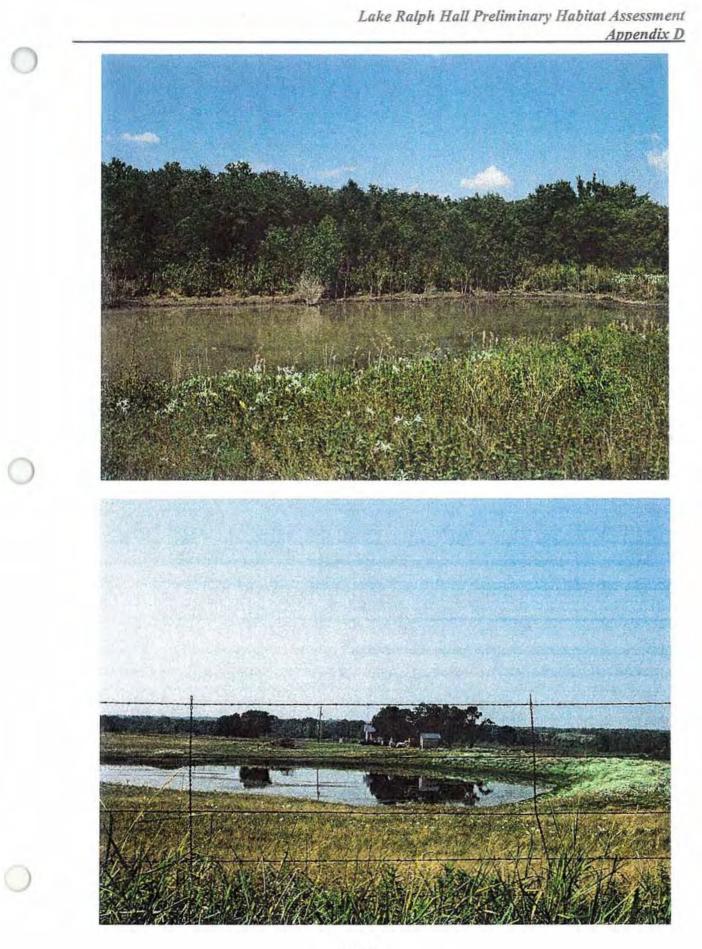

# REPRESENTATIVE PHOTOGRAPHS OF PONDS


# REPRESENTATIVE PHOTOGRAPHS OF PONDS







Lake Ralph Hall Preliminary Habitat Assessment Appendix D














Lake Ralph Hall Preliminary Habitat Assessment Appendix E

# BIOLOGICAL HABITAT COMPONENTS EVALUATION KEY

Value

## Component 1 - Site Potential

Evaluate for all cover types.

## Criteria<sup>2</sup>

| Substrate is composed or exhibits one or more of the following: 1) at least periodically supports predomi- nately hydrophytic vegetation; 2) is predominately undrained hydric soil and supports or is capable of supporting hydrophytic vegetation; 3) is saturated with water or covered by shallow water during 1-2 months during the growing season of each year (swamps, bogs, | 25 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| marshes, and hardwood bottomlands exhibiting a high frequency of flooding).<br>Alluvial substrate although less hydric than above; only temporarily or<br>intermittently inundated or saturated for short periods (higher terraces of hard-                                                                                                                                         | 25 |
| wood bottoms, riparian drainages).                                                                                                                                                                                                                                                                                                                                                  | 20 |
| Uplands with thick surface layer (generally greater than or equal to 10 inches) consisting of unrestricted loam (including sandy loam) or dark well structured (granulated) clay (including sandy clay).                                                                                                                                                                            | 12 |
| Uplands with shallow surface layer (generally less than 10 inches) consisting<br>of shallow soil over restrictive layer (rock, gravel, claypan, etc.) or deep,<br>leached, droughty sand or, relatively light colored, poorly structured clay or                                                                                                                                    |    |
| gravelly/stony sand or clay.                                                                                                                                                                                                                                                                                                                                                        | 7  |
| Organic matter minimal or absent at the surface. (Includes undrained or<br>saturated hydric soils not supporting vegetation i.e., mud flats).                                                                                                                                                                                                                                       | 3  |
| Surface contains chemical compounds which would potentially limit growth of<br>primary producers (salt, mine overburden containing heavy metals or acid                                                                                                                                                                                                                             |    |
| compounds, surface pollution).                                                                                                                                                                                                                                                                                                                                                      | 1  |

# **Component 2 - Temporal Development of Existing Successional Stage**

Determine currently existing successional stage (Criteria A); evaluate for all cover types except marshes. For this habitat type use Criteria B.

| Criteria A <sup>3</sup>                                                    | Value |
|----------------------------------------------------------------------------|-------|
| Old timber (100 or more years, trees >25 inches*)                          | 20    |
| Mature timber, old brush, climax prairie (40-99 years, trees 12-25 inches) | 12    |
| Pole and young timber, mature brush (11-39 years, trees <12 inches)        | 6     |
| Grasslands in grazing disclimax** or early and mid-successional perennial  |       |
| grasses and forbs, hay meadows                                             | 5     |
| Seedlings, saplings, young brush (3-10 years)                              | 3     |
| Annual native or introduced grasses, forbs, crops                          | 1     |
|                                                                            |       |

\* Diameter at breast height (DBH)

\*\* Example: Texas wintergrass-silver bluestem grasslands

body with a free connection to the sea and a measurable quantity of salt in its waters but with abundant or semi-abundant freshwater inflow (estuarine areas). Established mature communities or intermediate to well advanced successional stages occurring in fresh, brackish, or saline environments; freshwater inflow limited to generally small tributaries and localized runoff or overflow from flood conditions.

Aquatic or semi-aquatic communities occurring in generally early to intermediate successional stages as a result of periodic changes in moisture gradients; highly dependent on seasonal weather conditions.

10

5

### **Component 3 - Uniqueness and Relative Abundance**

1. Evaluate the habitat within the site according to the categories below.

| Category                                                                                                        | Value  |
|-----------------------------------------------------------------------------------------------------------------|--------|
| Highly valuable for wildlife and is very uncommon, unique or irreplaceable                                      |        |
| (USFWS Mitigation Resource Category 1)                                                                          | 20     |
| Highly valuable for wildlife but is relatively scarce or becoming scarce (USFWS Mitigation Resource Category 2) | 15     |
| Exhibits high to medium value for wildlife and is relatively abundant (USFWS<br>Mitigation Resource Category 3) | 10     |
| Exhibits medium to low value for wildlife and is relatively abundant (USFWS                                     | 5      |
| Mitigation Resource Category 4)<br>Exhibits very low wildlife value regardless of abundance or scarcity         | 5<br>0 |
|                                                                                                                 | Ũ      |

## **Component 4 - Vegetation Species Diversity**

Criteria A

**Diversity of Woody Species** 

Evaluate the composition of readily observable woody species in the overstory, midstory, and understory by determining the number of species groups as represented by the following categories. Evaluate for all cover types except Swamps (Criteria C) and Marsh wetlands (Criteria D). Worksheet for Criteria A&B provided on page 25.

| Species Group <sup>4</sup> | Examples                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Berry/Drupe                | hackberry, mulberry, paw paw, hawthorn, winterberry, black<br>haw, soapberry, persimmon, choke cherry, yaupon,<br>dogwood, Am. beautyberry, greenbriar, dewberry, poison ivy,<br>rattan vine, blackgum, grape, mulberry, holly, bumelia,<br>huckleberry, sumac, Virginia creeper, sassafras, prickly ash,<br>chinaberry, crab apple, agarito, lotebush, ivy tree vine,<br>palmetto, peppervine; wax myrtle |
| Legume/Pod                 | mesquite, locust, redbud, Acacia spp., Eve's necklace,<br>Sesbania spp.                                                                                                                                                                                                                                                                                                                                    |
| Acorn                      | white oak, red oak, live oak, water oak, willow oak, post oak,<br>bur oak                                                                                                                                                                                                                                                                                                                                  |
| Nut/Nutlike                | hickory, pecan, walnut, water elm, buttonbush,                                                                                                                                                                                                                                                                                                                                                             |

| Samara (Winged Fruit)                                     | ephidra,bitternut, hornbean<br>elm, ash, box elder, maple                                                                          |
|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| Cone                                                      | pine, cypress, juniper                                                                                                             |
| Achene                                                    | sycamore, Baccharis spp., sandsage, Clematis spp., salt<br>bush                                                                    |
| All others(capsules,<br>follicles,<br>burrs, hairy seeds) | willow, cottonwood, sweetgum, salt cedar, yucca, cactus,<br>buttonbush, sweetgum, bois d'arc, creosotebush, Chinese<br>tallow-tree |

Value assigned is equivalent to the number of groups represented (Maximum=8, If none is represented then value is 0)

### Criteria B

Total Number of Occurring Woody Species

Determine the total number of readily observable woody species and assign value according to the following categories. Do not use for Swamps (Criteria C) or Marsh wetlands (Criteria D)

|                    | Value |
|--------------------|-------|
| 15 or more species | 7     |
| 10-14 species      | 5     |
| 5-9 species        | 3     |
| 1-4 species        | 1     |
| None occurring     | 0     |

#### Criteria C

Diversity of Vegetation in Swamps

Evaluate swamp areas according to the following categories:<sup>5</sup>

|                                                                                                                                                             | Value |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Seasonally flooded mixed bottomland hardwoods; inundation resulting from freshwater inflow                                                                  | 15    |
| Seasonally flooded vegetation dominated by cypress-tupelo; inundation resulting from freshwater inflow                                                      | 10    |
| Continually flooded or infrequent, abrasively flooded vegetation comprised of one or more species; inundation resulting from freshwater, brackish or saline |       |
| inflow                                                                                                                                                      | 6     |
| Continually flooded vegetation; inundation resulting from stagnant or<br>impounded freshwater, brackish, or saline water conditions                         | 2     |

---

#### Criteria D

Diversity of Vegetation in Marshes and other similar wetland areas

Determine the major types of wetland vegetation present according to the following categories: rooted emergent vegetation, rooted submergent vegetation, rooted

vegetation with floating leaves, algal mat communities (microalgae), benthic or drifting seaweeds (macroalgae).

|                                                    | Value |
|----------------------------------------------------|-------|
| High - includes three or more of above categories. | 20    |
| Medium - includes two of the above categories.     | 15    |
| Low - includes one of the above categories.        | 5     |

# **Component 5 - Vertical Vegetation Stratification<sup>6</sup>**

Evaluate canopy coverage of the following three categories of vegetation for all cover types except crops and marsh wetlands.

| Categories:    | 1. Vegetation greater than 12 feet high                           |       |
|----------------|-------------------------------------------------------------------|-------|
|                | 2. Vegetation 3-12 feet high                                      |       |
|                | 3. Vegetation less than 3 feet high                               |       |
| Criteria       |                                                                   | Value |
| All three cate | gories present, each accounting for at least 25 percent of ground |       |
| cover          |                                                                   | 5     |
| •              | e above categories present, each accounting for at least 25       |       |
| percent of gro | ound cover                                                        | 4     |
| •              | ne above categories present and accounting for at least 25        |       |
| percent of gro |                                                                   | 3     |
| None of the c  | ategories together account for more than 25 percent of ground     |       |
| cover          |                                                                   | 1     |

## **Component 6- Additional Structural Diversity Components**

Evaluate for all cover types except crops. Determine the presence of brush piles, rock piles, rocky crevices, snags, fallen logs, thick grass cover, brambles or thickets according to the following categories.

| Criteria                                                                                                                                                                               | Value  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| <u>Abundant</u> - Three or more of the above components readily apparent and observable from most locations with the site                                                              | 5      |
| <u>Moderate</u> - Any of the above components present, and observable with very<br>little search effort                                                                                | 3      |
| <u>Sparse</u> - Any of the above components present, but occurring infrequently or requiring significant search effort to locate <u>Absent</u> - None of the above components observed | 1<br>0 |

## **Component 7 - Condition of Existing Vegetation - Other**

Use: Criteria A&B for cover types (other than crops and marsh wetlands) containing woody and/or herbaceous vegetation. Criteria C for cropland only. Criteria D for marsh wetlands.

#### Criteria A

Degree of utilization of woody vegetation by vertebrates and invertebrates

#### Criteria B

Availability of Herbaceous Vegetation. Do not evaluate for Crops (Criteria C) or Marsh Wetlands (Criteria D)

|                                                                               | Value |
|-------------------------------------------------------------------------------|-------|
| Good - Eight or more combined species of grasses and forbs readily            |       |
| observable.                                                                   | 5     |
| Fair - Four to seven combined species of grasses and forbs readily observable | 3     |
| Poor - One to three combined species of grasses and forbs readily observable  | 1     |
| None - Herbaceous vegetation lacking or absent                                | 0     |

#### Criteria C

Available Biomass (Evaluate for croplands only)

|                                                                                                                                                                                                                                                                                                                            | Value |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| <u>High</u> - Biomass removed periodically, although not necessarily annually;<br>removed biomass supplanted by other vegetation resulting from natural<br>succession of invading species or overseeding of introduced species; (Ex. Rice<br>or other crop on multi-year rotational system allowing for additional biomass |       |
| accumulations between harvests).                                                                                                                                                                                                                                                                                           | 10    |
| <u>Moderate</u> - Most biomass removed annually or semi-annually but with some residual amount remaining during portions of the rotational period. Minimal bare ground conditions (Hay operations, crops grown for pasture or grazing,                                                                                     |       |
| chiseled crops).                                                                                                                                                                                                                                                                                                           | 5     |
| Low - Most biomass removed annually due to clean farming practices creating significant bare ground conditions (intensive row crop farming).                                                                                                                                                                               | 1     |

### Criteria D

Condition of Marsh Wetlands

Value

<u>Unaltered</u> - Quality of water and/or associated vegetation good, no foreseeable danger of environmental intrusion including pollution, contamination,

sedimentation, or stagnation.

<u>Stable</u> - Quality of water and/or associated vegetation good, although evidence exists that pollution, contamination sedimentation or stagnation could occur in the future or has occurred in the past.

<u>Degraded</u> - Degraded - Quality of water and/or associated vegetation poor or declining or degradation imminent.

5

1

# WILDLIFE HABITAT APPRAISAL PROCEDURE FIELD EVALUATION FORMS

# WHAP Biological Components Field Evaluation Form

I

| Project Proposed Lake Ralph Hall | Date:    | 2005 |  |
|----------------------------------|----------|------|--|
| Cover Type or Plant Association  | Cropland |      |  |

| Habitat Components                               | Components Points<br>(From Key) |     |     |     |     |    |     |       |
|--------------------------------------------------|---------------------------------|-----|-----|-----|-----|----|-----|-------|
| Site No.                                         | 179                             | 458 | 434 | 127 | 546 | 32 | 543 | Total |
| 1. Site Potential                                | 7                               | 7   | 7   | 7   | 7   | 7  | 7   | 49    |
| 2. Temporal Development                          |                                 |     |     |     |     |    |     |       |
| Criteria A                                       | 1                               | 1   | 1   | 1   | 1   | 1  | 1   | 7     |
| Criteria B (Marsh Wetlands Only)                 | NA                              | NA  | NA  | NA  | NA  | NA | NA  | NA    |
| 3. Uniqueness and<br>Relative Abundance          | 0                               | 0   | 0   | 0   | 0   | 0  | 0   | 0     |
| 4. Vegetation Species Diversity                  |                                 |     |     |     |     |    |     |       |
| Criteria A                                       | NA                              | NA  | NA  | NA  | NA  | NA | NA. | NA    |
| Criteria B                                       | NA                              | NA  | NA  | NA  | NA  | NA | NA  | NA    |
| Criteria C (Swamps Only)                         | NA                              | NA  | NA  | NA  | NA  | NA | NA  | NA    |
| Criteria D (Marsh Wetlands Only)                 | NA                              | NA  | NA  | NA  | NA  | NA | NA  | NA    |
| 5. Vertical Stratification                       | NA                              | NA  | NA  | NA  | NA  | NA | NA  | NA    |
| 6. Additional Structural<br>Diversity Components | 0                               | 0   | 0   | 0   | 0   | 0  | 0   | 0     |
| 7. Condition of Existing Vegetation              |                                 |     |     |     |     |    |     |       |
| Criteria A (Woody Vegetation)                    | NA                              | NA  | NA  | NA  | NA  | NA | NA  | NA    |
| Criteria B (Heibaceous Vegetation)               | NA                              | NA  | NA  | NA  | NA  | NA | NA  | NA    |
| Criteria C (Croplands Only)                      | 1                               | 1   | 3   | 1   | 1   | 1  | 1   | 9     |
| Criteria D (Marsh Wetlands Only)                 | NA                              | NA  | NA  | NA  | NA  | NA | NA  | NA    |

Average Habitat Quality Score for all sites within this cover type = <u>Total Points</u> x <u>1</u>

this cover type = <u>Total Points</u> Total number of sites 0.09 100

## SPECIES LIST FOR CROP COVER TYPE

| Common Name         | Scientific Name      | Group      | Layer      |
|---------------------|----------------------|------------|------------|
| Bermuda grass       | Cynodon dactylon     | Caryopsis  | herbaceous |
| Foxtail grass       | Setaria italica      | Caryopsis  | herbaceous |
| Giant Ragweed       | Ambrosia trifida     | Achene     | herbaceous |
| Japanese brome      | Bromus japonicus     | Caryopsis  | herbaceous |
| Johnson Grass       | Sorghum halepense    | Caryopsis  | herbaceous |
| Perennial ryegrass  | Lolium perenne       | Caryopsis  | herbaceous |
| Prairie Peppergrass | Lepidium densiflorum | Silique    | herbaceous |
| Southern Crabgrass  | Digitaria ciliaris   | Caryopsis  | Herbaceous |
| White Clover        | Trifolium repens     | Legume/Pod | herbaceous |
| Wild Rye            | Elymus sp.           | Caryopsis  | herbaceous |

### WHAP Biological Components Field Evaluation Form

Project Proposed Lake Ralph Hall Date: 2005 Cover Type or Plant Association Pasture

| Habitat Components                               | Components Points<br>(From Key) |    |     |     |     |     |    |       |
|--------------------------------------------------|---------------------------------|----|-----|-----|-----|-----|----|-------|
| Site No.                                         | 458                             | 23 | 108 | 131 | 520 | 742 | 38 | Total |
| 1. Site Potential                                | 7                               | 7  | 7   | 7   | 7   | 7   | 7  | 49    |
| 2. Temporal Development                          |                                 |    |     |     |     |     |    |       |
| Criteria A                                       | 1                               | 1  | 1   | 1   | 1   | 1   | 1  | 7     |
| Criteria B (Marsh Wetlands Only)                 | NA                              | NA | NA  | NA  | NA  | NA  | NA | NA    |
| 3. Uniqueness and Relative Abundance             | 5                               | 5  | 5   | 5   | 5   | 5   | 5  | 35    |
| 4. Vegetation Species Diversity                  |                                 |    |     |     |     |     |    |       |
| Criteria A                                       | NA                              | NA | NA  | NA  | NA  | NA  | NA | NA    |
| Criteria B                                       | NA                              | NA | NA  | NA  | NA  | NA  | NA | NA    |
| Criteria C (Swamps Only)                         | NA                              | NA | NA  | NA  | NA  | NA  | ŃA | NA    |
| Criteria D (Marsh Wetlands Only)                 | NA                              | NA | NA  | NA  | NA  | NA  | NA | NA    |
| 5. Vertical Stratification                       | 3                               | 3  | 3   | 3   | 3   | 3   | 3  | 21    |
| 6. Additional Structural<br>Diversity Components | 0                               | 0  | 0   | 0   | 0   | 0   | 0  | 0     |
| 7. Condition of Existing Vegetati                | on                              |    |     |     |     |     |    | -     |
| Criteria A (Woody Vegetation)                    | NA                              | NA | NA  | NA  | NA  | NA  | NA | NA    |
| Criteria B (Herbaceous Vegetation)               | 5                               | 5  | 1   | 5   | 3   | 5   | 3  | 27    |
| Criteria C (Croplands Only)                      | NA                              | NA | NA  | NA  | NA  | NA  | NA | NA    |
| Criteria D (Marsh Wetlands Only)                 | NA                              | NA | NA  | NÅ. | NA  | NA  | NA | NA    |

Average Habitat Quality Score for all sites within

this cover type = \_\_\_\_ **Total Points** x 1 0.20 Total number of sites 100

# SPECIES LIST FOR PASTURE COVER TYPE

| Common Name             | Scientific Name         | Group       | Layer      |
|-------------------------|-------------------------|-------------|------------|
| Bermuda                 | Cynodon dactylon        | Caryopsis   | herbaceous |
| Buttercup               | Ranunculus sp.          | Achene      | herbaceous |
| Cocklebur               | Xanthium sp.            | Achene      | herbaceous |
| Curly Dock              | Rumex crispus           | Achene      | herbaceous |
| Dewberry                | Rubus trivialis         | Berry/Drupe | herbaceous |
| Dotted Blue-eyed Grass  | Sisyrinchium langloisii | Capsule     | herbaceous |
| Fescue                  | Festuca arundinacea     | Caryopsis   | herbaceous |
| Fiddle Dock             | Rumex pulcher           | Achene      | herbaceous |
| Johnson Grass           | Sorghum halepense       | Caryopsis   | herbaceous |
| Prairie Phlox           | Phlox pilosa            | Capsule     | herbaceous |
| Purple Threeawn         | Aristida purpurea       | Caryopsis   | herbaceous |
| Showey Evening Primrose | Oenothera speciosa      | Capsule     | herbaceous |
| Spurred Butterfly Pea   | Centrosema virginianum  | Legume/Pod  | herbaceous |
| Texas Prairie Parsley   | Polytaenia texana       | Schizocarp  | herbaceous |
| Texas Toadflax          | Nuttallanthus texanus   | Capsule     | herbaceous |
| Texas Vervain           | Verbena halei           | Nut/Nutlike | herbaceous |
| Trumpet Creeper         | Campsis radicans        | Capsule     | herbaceous |
| Vetch                   | Vicia sp.               | Legume/Pod  | herbaceous |
| Violet                  | Viola sp.               | Capsule     | herbaceous |
| White Clover            | Trifolium repens        | Legume/Pod  | herbaceous |
| Wild Onion              | Allium canadense        | Capsule     | herbaceous |
| Woodsorrell             | Oxalis sp.              | Capsule     | herbaceous |
| Yellow Thistle          | Cirsium horridulum      | Achene      | herbaceous |

### WHAP Biological Components Field Evaluation Form

Project Proposed Lake Ralph HallDate: 2005Cover Type or Plant AssociationGrasses

| Habitat Components                               | Components Points<br>(From Key) |     |     |     |     |     |    |       |
|--------------------------------------------------|---------------------------------|-----|-----|-----|-----|-----|----|-------|
| Site No.                                         | 510                             | 330 | 321 | 577 | 535 | 683 | 53 | Total |
| 1. Site Potential                                | 7                               | 7   | 7   | 7   | 7   | 7   | 7  | 49    |
| 2. Temporal Development                          |                                 |     |     |     |     |     |    |       |
| Criteria A                                       | 1                               | 1   | 1   | 1   | 1   | 1   | .5 | 11    |
| Criteria B (Marsh Wetlands Only)                 | NA                              | NA  | NA  | NA  | NA  | NA  | NA | NA    |
| 3. Uniqueness and Relative Abundance             | 5                               | 5   | 5   | 10  | 10  | 10  | 10 | 55    |
| 4. Vegetation Species Diversity                  |                                 |     |     |     |     |     |    |       |
| Criteria A                                       | NA                              | NA  | NA  | NA  | NA  | NA  | NA | NA    |
| Criteria B                                       | NA                              | NA  | NA  | NA  | NA  | NA  | NA | NA    |
| Criteria C (Swamps Only)                         | NA                              | NA  | NA  | NA  | NA  | NA  | NA | ŇA    |
| Criteria D (Marsh Wetlands Only)                 | NA                              | NA  | NA  | NA  | NA  | NA  | NA | NA    |
| 5. Vertical Stratification                       | 3                               | 3   | 3   | 3   | 3   | 3   | 3  | 21    |
| 6. Additional Structural<br>Diversity Components | 1                               | 0   | 1   | 1   | 0   | 0   | 1  | 4     |
| 7. Condition of Existing Vegetati                | on                              |     |     |     |     |     |    |       |
| Criteria A (Woody Vegetation)                    | ŇA                              | NA  | NA  | ŃA  | NA  | NA  | NA | NA    |
| Criteria B (Herbaceous Vegetation)               | 5                               | 3   | 5   | 5   | 5   | 5   | 5  | 33    |
| Criteria C (Cropiands Only)                      | NA                              | NA  | NA  | NA  | NA  | NA  | NA | NA    |
| Criteria D (Marsh Wetlands Only)                 | NA                              | NA  | NA  | NA  | NA  | NA  | NA | NA    |

Average Habitat Quality Score for all sites within

this cover type =  $\frac{\text{Total Points}}{\text{Total number of sites}}$   $\frac{x \ 1}{100}$  =  $\frac{0.25}{0.25}$ 

# SPECIES LIST FOR GRASSES COVER TYPE

| Common Name                   | Scientific Name           | Group       | Layer      |
|-------------------------------|---------------------------|-------------|------------|
| Annual Ragweed                | Ambrosia artemisiifolia   | Achene      | herbaceous |
| Beaked Cornsalad              | Valerianella radiata      | Achene      | herbaceous |
| Bermuda                       | Cynodon dactylon          | Caryopsis   | herbaceous |
| Big Bluestem                  | Andropogon gerardii       | Achene      | herbaceous |
| Japanese Brome                | Bromus japonicus          | Caryopsis   | herbaceous |
| Bushy Bluestem                | Andropogon glomeratus     | Achene      | herbaceous |
| Buttercup                     | Ranunculus sp.            | Achene      | herbaceous |
| Catchweed Bedstraw            | Galium aparine            | Schizocarp  | herbaceous |
| Clasping Venus' Looking-glass | Triodanis perfoliata      | Capsule     | herbaceous |
| Common Selfheal               | Prunella vulgaris         | Nut/Nutlike | herbaceous |
| Common Sunflower              | Helianthus annuus         | Achene      | herbaceous |
| Common Yarrow                 | Achillea millefolium      | Achene      | herbaceous |
| Cross-vine                    | Bignonia capreolata       | Capsule     | herbaceous |
| Curly Dock                    | Rumex crispus             | Achene      | herbaceous |
| Dewberry                      | Rubus trivialis           | Berry/Drupe | herbaceous |
| Dill Family                   | Anethum sp.               | Schizocarp  | herbaceous |
| Dotted Blue-eyed Grass        | Sisyrinchium langloisii   | Capsule     | herbaceous |
| Fiddle Dock                   | Rumex pulcher             | Achene      | herbaceous |
| Flameleaf Sumac               | Rhus copallinum           | Berry/Drupe | herbaceous |
| Flax                          | Linum sp.                 | Capsule     | herbaceous |
| Foxtail Grass                 | Setaria sp.               | Caryopsis   | herbaceous |
| Giant Ragweed                 | Ambrosia trifida          | Achene      | herbaceous |
| Goldenrod                     | Solidago sp.              | Achene      | herbaceous |
| Green Wild Indigo             | Baptisia sphaerocarpa     | Legume/Pod  | herbaceous |
| Greenbriar                    | Smilax bona-nox           | Berry/Drupe | herbaceous |
| Henbit                        | Lamium amplexicaule       | Nut/Nutlike | herbaceous |
| Illinois Bundleflower         | Desmanthus illinoensis    | Legume/Pod  | herbaceous |
| Indian paintbrush             | Castilleja sp.            | Capsule     | herbaceous |
| Johnson Grass                 | Sorghum halepense         | Caryopsis   | herbaceous |
| Little Bluestem               | Schizachyrium scoparium   | Achene      | herbaceous |
| Milkweed                      | Asclepias sp.             | Follicle    |            |
| Nettle Family                 |                           | Achene      |            |
| Nightshade                    | Solanum sp.               | Berry/Drupe |            |
| Pigweed                       | Amaranthus sp.            | Utricle     |            |
| Prairie Peppergrass           | Lepidium densiflorum      | Silique     | herbaceous |
| Prairie Plantain              | Plantago elongata         | Capsule     | herbaceous |
| Prickly Pear Cactus           | Opuntia sp.               | Berry/Drupe | herbaceous |
| Purple Threeawn               | Aristida purpurea         | Caryopsis   |            |
| Quakinggrass                  | Briza minor               | Caryopsis   | herbaceous |
| Ryegrass                      | Lolium perenne            | Caryopsis   | herbaceous |
| Sensitive Briar               | Schrankia spp.            | Legume/Pod  | herbaceous |
| Showy Evening Primrose        | Oenothera speciosa        | Capsule     | herbaceous |
| Spurge Family                 |                           | Capsule     | herbaceous |
| Spurred Butterfly Pea         | Centrosema virginianum    | Legume/Pod  |            |
| Sunflower Family              | Aster sp.                 | Achene      | herbaceous |
| Texas Dandelion               | Pyrrhopappus carolinianus | Achene      |            |
| Texas Prairie Parsley         | Polytaenia texana         | Schizocarp  |            |
| Texas Vervain                 | Verbena halei             | Nut/Nutlike | herbaceous |
| Trumpet Creeper               | Campsis radicans          | Capsule     | herbaceous |

# SPECIES LIST FOR GRASSES COVER TYPE

| Vetch               | Vicia sp.                  | Legume/Pod  | herbaceous |
|---------------------|----------------------------|-------------|------------|
| Virginia Creeper    | Parthenocissus quinquefoli | Berry/Drupe | herbaceous |
| White Clover        | Trifolium repens           | Legume/Pod  | herbaceous |
| Wild Geranium       | Geranium caroliniuanum     | Legume/Pod  | herbaceous |
| Wild Onion          | Allium canadense           | Capsule     | herbaceous |
| Wild Petunia        | Ruellia sp.                | Capsule     | herbaceous |
| Yellow Sweet Clover | Melilotus indicus          | Legume/Pod  | herbaceous |
| Yellow Thistle      | Cirsium horridulum         | Achene      | herbaceous |

### WHAP Biological Components Field Evaluation Form

Project Proposed Lake Ralph Hall Date: 2005 Cover Type or Plant Association Forest

| Habitat Components                               | Components Points<br>(From Key) |     |     |     |     |     |     |       |
|--------------------------------------------------|---------------------------------|-----|-----|-----|-----|-----|-----|-------|
| Site No.                                         | 684                             | 510 | 706 | 330 | 518 | 539 | 742 | Total |
| 1. Site Potential                                | 12                              | 12  | 12  | 7   | 7   | 12  | 12  | 74    |
| 2. Temporal Development                          |                                 |     |     |     |     |     |     |       |
| Criteria A                                       | 6                               | 12  | 12  | 12  | 12  | 12  | 12  | 78    |
| Criteria B (Marsh Wetlands Only)                 | NA                              | NA  | NA  | NA  | NA  | NA  | NA  | NA    |
| 3. Uniqueness and<br>Relative Abundance          | 15                              | 15  | 15  | 15  | 10  | 10  | 15  | 95    |
| 4. Vegetation Species Diversity                  | 4. Vegetation Species Diversity |     |     |     |     |     |     |       |
| Criteria A                                       | 7                               | 8   | 7   | 6   | 5   | 4   | 8   | 45    |
| Criteria B                                       | 7                               | 7   | 7   | 7   | 5   | 3   | 5   | 41    |
| Criteria C (Swamps Only)                         | NA                              | NA  | NA  | NA  | NA  | NA  | NA  | NA    |
| Criteria D (Marsh Wetlands Only)                 | NA                              | NA  | NA  | NA  | NA  | NA  | NA  | NA    |
| 5. Vertical Stratification                       | 4                               | 5   | 4   | 5   | 5   | 4   | 4   | 31    |
| 6. Additional Structural<br>Diversity Components | 5                               | 1   | 3   | 1   | 3   | 3   | 1   | 17    |
| 7. Condition of Existing Vegetation              |                                 |     |     |     |     |     |     |       |
| Criteria A (Woody Vegetation)                    | 1                               | 5   | 5   | 5   | 5   | 5   | 5   | 31    |
| Criteria B (Herbaceous Vegetation)               | 5                               | 5   | 5   | 5   | 5   | 3   | 5   | 33    |
| Criteria C (Cropiands Only)                      | NA                              | NA  | NA  | NA  | NA  | NA  | NA  | NA    |
| Criteria D (Marsh Wetlands Only)                 | NA                              | NA  | NA  | NA  | NA  | NA  | NA  | NA.   |

Average Habitat Quality Score for all sites within

this cover type =  $\frac{\text{Total Points}}{\text{Total number of sites}}$   $\frac{x \ 1}{100}$  =  $\frac{0.64}{2}$ 

## SPECIES LIST FOR FOREST COVER TYPE

| Common Name       | Scientific Name            | Group       | Layer        |
|-------------------|----------------------------|-------------|--------------|
| American Elm      | Ulmus americana            | Samara      | canopy       |
| Black Willow      | Salix nigra                | Capsule     | canopy       |
| Blackjack Oak     | Quercus marilandica        | Acorn       | canopy       |
| Bois d' Arc       | Maclura pomifera           | Achene      | canopy       |
| Box Elder         | Acer negundo               | Samara      | canopy       |
| Bur Oak           | Quercus macrocarpa         | Acorn       | canopy       |
| Cedar Elm         | Ulmus crassifolia          | Samara      | canopy       |
| Cottonwood        | Populus deltoides          | Berry/Drupe | canopy       |
| Eastern Red Cedar | Juniperus virginiana       | Cone        | canopy       |
| Green Ash         | Fraxinus pennsylvanica     | Samara      | canopy       |
| Hackberry         | Celtis laevigata           | Berry/Drupe |              |
| Hawthorn          | Crataegus texana           | Berry/Drupe |              |
| Honey Locust      | Gleditsia triacanthos      | Legume/Pod  |              |
| Pecan             | Carya illinoensis          | Nut/Nutlike | canopy       |
| Post Oak          | Quercus stellata           | Acorn       |              |
| Red Oak           | Quercus texana             | Acorn       |              |
| Texas ash         | Fraxinus texensis          | Berry/Drupe |              |
| White Ash         | Fraxinus americana         | Samara      | canopy       |
| Winged Elm        | Ulmus alata                | Samara      |              |
| American Elm      | Ulmus americana            | Samara      |              |
| Bamboo            | Phyllostachys sp.          | Other       |              |
| Black Willow      | Salix nigra                | Capsule     |              |
| Bois d' Arc       | Maclura pomifera           | Achene      |              |
| Box Elder         | Acer negundo               | Samara      |              |
| Cedar Elm         | Ulmus crassifolia          | Samara      |              |
| Chickasaw plum    | Prunus angustifolia        | Berry/Drupe | understory   |
| Chinaberry        | Melia azedarach            | Berry/Drupe |              |
| Chinese privet    | Ligustrum sinese           | Berry/Drupe |              |
| Chinquapin Oak    | Quercus muehlenbergii      | Acorn       |              |
| Cottonwood        | Populus deltoides          | Berry/Drupe | understory   |
| Deciduous Holly   | llex decidua               | Berry/Drupe |              |
| Eastern Red Cedar | Juniperus virginiana       | Cone        | understory   |
| Eve's Necklace    | Sophora affinis            | Legume/Pod  | understory   |
| Green Ash         | Fraxinus pennsylvanica     | Samara      | understory   |
| Gum Bumelia       | Bumelia lanuginosum        | Berry/Drupe | understory   |
| Hackberry         | Celtis laevigata           | Berry/Drupe | understory   |
| Hawthorn          | Crataegus texana           | Berry/Drupe | understory   |
| Honey Locust      | Gleditsia triacanthos      | Legume/Pod  | understory   |
| Mexican Plum      | Prunus mexicana            | Berry/Drupe | understory   |
| Pecan             | Carya illinoensis          | Nut/Nutlike | understory   |
| Post Oak          | Quercus stellata           | Acorr       | understory   |
| Rattlebush        | Sesbania drummondii        | Legume/Poo  | l understory |
| Red Oak           | Quercus shumardii          | Acorr       |              |
| Redbud            | Cercis canadensis          | Legume/Poo  |              |
| Roughleaf Dogwood | Cornus drummondii          | Berry/Drupe |              |
| Sassafras         | Sassafras albidum          | Berry/Drupe |              |
| Soapberry         | Sapindus drummondii        | Berry/Drupe |              |
| Toothache Tree    | Zanthoxylum clava-herculis | Berry/Drupe |              |
| Wild Rose Bush    | Rosa sp.                   | Achene      |              |

## SPECIES LIST FOR FOREST COVER TYPE

| Annual Ragweed         | Ambrosia artemisiifolia    | Achene      | herbaceous |
|------------------------|----------------------------|-------------|------------|
| Beaked Cornsalad       | Valerianella radiata       | Achene      | herbaceous |
| Bermuda                | Cynodon dactylon           | Caryopsis   | herbaceous |
| Browneyed Susan        | Rudbeckia triloba          | Achene      | herbaceous |
| Bushy Bluestem         | Andropogon glomeratus      | Achene      | herbaceous |
| Buttercup              | Ranunculus sp.             | Achene      | herbaceous |
| Catchweed Bedstraw     | Galium aparine             | Schizocarp  | herbaceous |
| Cocklebur              | Xanthium sp.               | Achene      | herbaceous |
| Common Selfheal        | Prunella vulgaris          | Nut/Nutlike | herbaceous |
| Common Yarrow          | Achillea millefolium       | Achene      | herbaceous |
| Coral Honeysuckle      | Lonicera sempervirens      | Berry/Drupe | herbaceous |
| Coralberry             | Symphoricarpos orbiculatus | Berry/Drupe | herbaceous |
| Cross-vine             | Bignonia capreolata        | Capsule     | herbaceous |
| Curly Dock             | Rumex crispus              | Achene      | herbaceous |
| Dewberry               | Rubus trivialis            | Berry/Drupe | herbaceous |
| False Indigo           | Amorpha fruticosa          | Legume/Pod  | herbaceous |
| Flameleaf Sumac        | Rhus copallinum            | Berry/Drupe | herbaceous |
| Foxtail Grass          | Setaria italica            | Caryopsis   | herbaceous |
| Giant Ragweed          | Ambrosia trifida           | Achene      | herbaceous |
| Giant Reed             | Arundo donax               | Caryopsis   | herbaceous |
| Goldenrod              | Solidago sp.               | Achene      | herbaceous |
| Grapevine              | Vitis sp.                  | Berry/Drupe | herbaceous |
| Green Wild Indigo      | Baptisia sphaerocarpa      | Legume/Pod  | herbaceous |
| Greenbriar             | Smilax bona-nox            | Berry/Drupe | herbaceous |
| Heavenly Bamboo        | Nandina domestica          | Berry/Drupe | herbaceous |
| Hedgenettle            | Stachys sp.                |             | herbaceous |
| Illinois Bundleflower  | Desmanthus illinoensis     | Legume/Pod  | herbaceous |
| Indian Paintbrush      | Castilleja sp.             | Capsule     | herbaceous |
| Inland Sea Oats        | Chasmanthium latifolium    | Achene      | herbaceous |
| Japanese Honeysuckle   | Lonicera japonica          | Berry/Drupe | herbaceous |
| Johnson Grass          | Sorghum halepense          | Caryopsis   | herbaceous |
| Little Bluestem        | Schizachyrium scoparium    | Achene      | herbaceous |
| Lizard's Tail          | Saururus cernuus           | Capsule     | herbaceous |
| May Apple              | Podophyllum peltatum       | Berry/Drupe | herbaceous |
| Milkweed               | Asclepias sp.              | Follicle    | herbaceous |
| Mint Family            |                            | Nut/Nutlike | herbaceous |
| Mulberry               | Morus sp.                  | Achene      | herbaceous |
| Mustang Grape          | Vitis mustangensis         | Berry/Drupe | herbaceous |
| Mustard Family         |                            | Silique     | herbaceous |
| Perennial Ryegrass     | Lolium perenne             | Caryopsis   | herbaceous |
| Plantain               | Plantago sp.               | Capsule     | herbaceous |
| Poison Ivy             | Toxicodendron radicans     | Berry/Drupe | herbaceous |
| Prairie Plantain       | Plantago elongata          | Capsule     | herbaceous |
| Prickly Pear Cactus    | Opuntia sp.                | Berry/Drupe | herbaceous |
| Quakinggrass           | Briza minor                | Caryopsis   | herbaceous |
| Queen Anne's Lace      | Daucus carota              | Schizocarp  | herbaceous |
| Sedge                  | Carex sp.                  | Achene      | herbaceous |
| Showy Evening Primrose | Oenothera speciosa         | Capsule     | herbaceous |
| Slender Fimbry         | Fimbristylis autumnalis    | Achene      | herbaceous |
| Spurred Butterfly Pea  | Centrosema virginianum     | Legume/Pod  | herbaceous |

٧

## SPECIES LIST FOR FOREST COVER TYPE

| Sunflower Family      | Aster sp.                   | Achene      | herbaceous |
|-----------------------|-----------------------------|-------------|------------|
| Texas Dandelion       | Pyrrhopappus carolinianus   | Achene      | herbaceous |
| Texas Prairie Parsley | Polytaenia texana           | Schizocarp  | herbaceous |
| Texas Vervain         | Verbena halei               | Nut/Nutlike | herbaceous |
| Trumpet Creeper       | Campsis radicans            | Capsule     | herbaceous |
| Vetch                 | Vicia sp.                   | Legume/Pod  | herbaceous |
| Violet                | Viola sp.                   | Capsule     | herbaceous |
| Virginia Creeper      | Parthenocissus quinquefolia | Berry/Drupe | herbaceous |
| Virginia Wildrye      | Elymus virginicus           | Caryopsis   | herbaceous |
| White Clover          | Trifolium repens            | Legume/Pod  | herbaceous |
| Wild Onion            | Allium canadense            | Capsule     | herbaceous |
| Woodsorrel            | Oxalis sp.                  | Capsule     | herbaceous |

### WHAP Biological Components Field Evaluation Form

Project Proposed Lake Ralph Hall Date: 2005
Cover Type or Plant Association Young Forest

| Habitat Components                               | Components Points<br>(From Key)     |     |     |     |     |     |     |       |
|--------------------------------------------------|-------------------------------------|-----|-----|-----|-----|-----|-----|-------|
| Site No.                                         | 167                                 | 127 | 108 | 519 | 325 | 520 | 749 | Total |
| 1. Site Potential                                | 12                                  | 12  | 7   | 7   | 7   | 7   | 7   | 59    |
| 2. Temporal Development                          |                                     |     | ·   |     |     |     |     |       |
| Criteria A                                       | 6                                   | 6   | 6   | 6   | 6   | 6   | 6   | 42    |
| Criteria B (Marsh Wetlands Only)                 | NA                                  | NA  | NA  | NA  | NA  | NA  | NA  | NA    |
| 3. Uniqueness and Relative Abundance             | 10                                  | 10  | 10  | 10  | 10  | 10  | 10  | 70    |
| 4. Vegetation Species Diversity                  | 4. Vegetation Species Diversity     |     |     |     |     |     |     |       |
| Criteria A                                       | 5                                   | 7   | 7   | 4   | 3   | 8   | 5   | 39    |
| Criteria B                                       | 3                                   | 5   | 5   | 5   | 3   | 7   | 3   | 31    |
| Criteria C (Swamys Only)                         | NA                                  | NA  | NA  | NA  | NA  | NA  | NA  | NA    |
| Criteria D (Marsh Wetlands Only)                 | NA                                  | NA  | NA  | NA  | NA  | NA  | NA  | NA    |
| 5. Vertical Stratification                       | 4                                   | 4   | 4   | 4   | 4   | 4   | 4   | 28    |
| 6. Additional Structural<br>Diversity Components | 1                                   | 3   | 3   | 1   | 1   | 1   | 1   | 11    |
| 7. Condition of Existing Vegetati                | 7. Condition of Existing Vegetation |     |     |     |     |     |     |       |
| Criteria A (Woody Vegetation)                    | 5                                   | 5   | 5   | 5   | 5   | 5   | 5   | 35    |
| Criteria B (Herbaceous Vegetation)               | 5                                   | 5   | 1   | 5   | 5   | 3   | 1   | 25    |
| Criteria C (Croplands Only)                      | NA                                  | ŇA  | NA  | NA  | NA  | NA  | NA  | NA.   |
| Criteria D (Marsh Wetlands Only)                 | NA                                  | NA  | NA  | NA  | NA  | NA  | NA  | NA    |

Average Habitat Quality Score for all sites within

this cover type =  $\frac{\text{Total Points}}{\text{Total number of sites}}$   $x \frac{1}{100} = \frac{0.49}{0.49}$ 

## SPECIES LIST FOR YOUNG FOREST COVER TYPE

| Common Name        | Scientific Name            | Group       | Layer      |
|--------------------|----------------------------|-------------|------------|
| American Elm       | Ulmus americana            | Samara      | canopy     |
| Black Willow       | Salix nigra                | Capsule     | canopy     |
| Bois d' Arc        | Maclura pomifera           | Achene      | canopy     |
| Box Elder          | Acer negundo               | Samara      | canopy     |
| Bur Oak            | Quercus macrocarpa         | Acorn       | canopy     |
| Cedar Elm          | Ulmus crassifolia          | Samara      | canopy     |
| Cottonwood         | Populus deltoides          | Berry/Drupe | canopy     |
| Eastern Red Cedar  | Juniperus virginiana       | Cone        | canopy     |
| Green Ash          | Fraxinus pennsylvanica     | Samara      | canopy     |
| Hackberry          | Celtis laevigata           | Berry/Drupe | canopy     |
| Honey Locust       | Gleditsia triacanthos      | Legume/Pod  | canopy     |
| Pecan              | Carya illinoensis          | Nut/Nutlike | canopy     |
| Post Oak           | Quercus stellata           | Acorn       | canopy     |
| Red Oak            | Quercus shumardii          | Acorn       | canopy     |
| Toothache Tree     | Zanthoxylum clava-herculis | Berry/Drupe | canopy     |
| Black Willow       | Salix nigra                | Capsule     |            |
| Bois d' Arc        | Maclura pomifera           | Achene      | understory |
| Cedar Elm          | Ulmus crassifolia          | Samara      | understory |
| Chickasaw plum     | Prunus angustifolia        | Berry/Drupe | understory |
| Chinese Privet     | Ligustrum sinese           | Berry/Drupe | understory |
| Deciduous Holly    | llex decidua               | Berry/Drupe | understory |
| Eastern Red Cedar  | Juniperus virginiana       | Cone        | understory |
| Eve's Necklace     | Sophora affinis            | Legume/Pod  | understory |
| Green Ash          | Fraxinus pennsylvanica     | Samara      | understory |
| Gum Bumelia        | Bumelia lanuginosum        | Berry/Drupe | understory |
| Hackberry          | Celtis laevigata           | Berry/Drupe | understory |
| Hawthorn           | Crataegus texana           | Berry/Drupe | understory |
| Honey Locust       | Gleditsia triacanthos      | Legume/Pod  | understory |
| Mesquite           | Prosopis glandulosa        | Legume/Pod  | understory |
| Mexican Plum       | Prunus mexicana            | Berry/Drupe | understory |
| Rattlebush         | Sesbania drummondii        | Legume/Pod  | understory |
| Redbud             | Cercis canadensis          | Legume/Pod  | understory |
| Soapberry          | Sapindus drummondii        | Berry/Drupe | understory |
| Toothache Tree     | Zanthoxylum clava-herculis | Berry/Drupe | understory |
| Wild Rose Bush     | Rosa sp.                   | Achene      | understory |
| American Pokeweed  | Phytolacca americana       | Berry/Drupe | herbaceous |
| Annual Ragweed     | Ambrosia artemisiifolia    | Achene      | herbaceous |
| Bermuda            | Cynodon dactylon           | Caryopsis   | herbaceous |
| Japanese Brome     | Bromus japonicus           | Caryopsis   | herbaceous |
| Bushy Bluestem     | Andropogon glomeratus      | Achene      | herbaceous |
| Buttercup          | Ranunculus sp.             | Achene      | herbaceous |
| Catchweed Bedstraw | Galium aparine             | Schizocarp  | herbaceous |
| Coralberry         | Symphoricarpos orbiculatus | Berry/Drupe | herbaceous |
| Curly Dock         | Rumex crispus              | Achene      |            |
| False Garlic       | Nothoscordum bivalve       | Achene      |            |
| Giant Ragweed      | Ambrosia trifida           | Achene      |            |
| Greenbriar         | Smilax bona-nox            | Berry/Drupe |            |
| Henbit             | Lamium amplexicaule        | Nut/Nutlike |            |
| Inland Sea Oats    | Chasmanthium latifolium    | Achene      |            |

## SPECIES LIST FOR YOUNG FOREST COVER TYPE

| Japanese Honeysuckle  | Lonicera japonica      | Berry/Drupe | herbaceous |
|-----------------------|------------------------|-------------|------------|
| Johnson Grass         | Sorghum halepense      | Caryopsis   | herbaceous |
| Mulberry              | Morus sp.              | Achene      | herbaceous |
| Mustard Family        |                        | Silique     | herbaceous |
| Perennial Ryegrass    | Lolium perenne         | Caryopsis   | herbaceous |
| Poison Hemlock        | Conium maculatum       | Schizocarp  | herbaceous |
| Poison Ivy            | Toxicodendron radicans | Berry/Drupe | herbaceous |
| Prickly Pear Cactus   | Opuntia sp.            | Berry/Drupe | herbaceous |
| Sedge                 | Carex sp.              | Achene      | herbaceous |
| Spurge Family         |                        | Capsule     | herbaceous |
| Sunflower Family      | Aster sp.              | Achene      | herbaceous |
| Texas Prairie Parsley | Polytaenia texana      | Schizocarp  | herbaceous |
| Trumpet Creeper       | Campsis radicans       | Capsule     | herbaceous |
| Virginia Wildrye      | Elymus virginicus      | Caryopsis   | herbaceous |

### WHAP **Biological Components** Field Evaluation Form

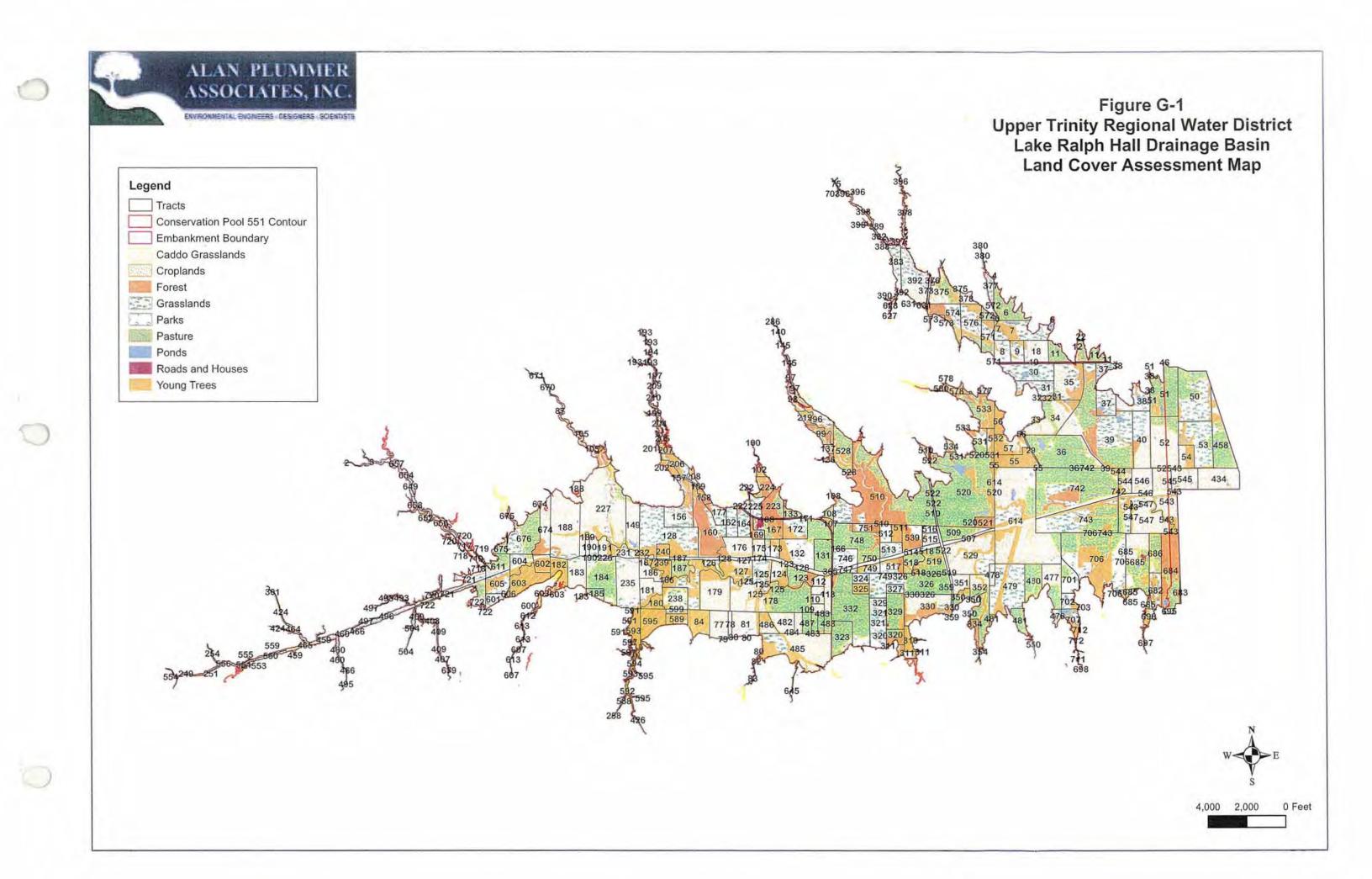
Project Proposed Lake Ralph Hall Cover Type or Plant Association Parks

Date: 2005

| Habitat Components                               | Components Points<br>(From Key) |     |     |     |     |     |     |       |
|--------------------------------------------------|---------------------------------|-----|-----|-----|-----|-----|-----|-------|
| Site No.                                         | 534                             | 701 | 749 | 321 | 126 | 535 | 706 | Total |
| 1. Site Potential                                | 7                               | 12  | 7   | 7   | 7   | 7   | 12  | 59    |
| 2. Temporal Development                          |                                 |     |     |     |     |     |     |       |
| Criteria A                                       | 6                               | 6   | 6   | 6   | 6   | 6   | 6   | 42    |
| Criteria B (Marsh Wetlands Only)                 | NA                              | NA  | NA  | NA  | NA  | NA  | NA  | · NA  |
| 3. Uniqueness and Relative Abundance             | 5                               | 5   | 5   | 5   | 5   | 5   | 5   | 35    |
| 4. Vegetation Species Diversity                  |                                 |     |     |     |     |     |     |       |
| Criteria A                                       | 6                               | .6  | 3   | 4   | 2   | 8   | 7   | 36    |
| Criteria B                                       | 3                               | 3   | 1   | 1   | 1   | 7   | 5   | 21    |
| Criteria C (Swamps Only)                         | NA                              | NA  | NA  | NA  | NA  | NA  | NA  | NA    |
| Criteria D (Marsh Wetlands Only)                 | NA                              | NA  | NA  | NA  | NA  | NA  | NA  | NA    |
| 5. Vertical Stratification                       | 3                               | 4   | 3   | 4   | 3   | 4   | 3   | 24    |
| 6. Additional Structural<br>Diversity Components | 0                               | 1   | 0   | 1   | 3   | 1   | 1   | 7     |
| 7. Condition of Existing Vegetation              |                                 |     |     |     |     |     |     |       |
| Criteria A (Woody Vegetation)                    | 5                               | 5   | 5   | 5   | 5   | 5   | 5   | 35    |
| Criteria B (Heabaceous Vegetation)               | 5                               | 5   | 1   | 3   | 3   | 5   | 5   | 27    |
| Criteria C (Cropiands Only)                      | NA                              | NA  | NA  | NA  | NA  | NA  | NA  | NA    |
| Criteria D (Marsh Wetlands Only)                 | NA                              | NA  | NA  | NA  | NA  | NA  | NA  | NA    |

Average Habitat Quality Score for all sites within

this cover type = \_\_\_\_\_ Total Points x <u>1</u> = Total number of sites 100 0.41


## SPECIES LIST FOR PARKS COVER TYPE

| Common Name                   | Scientific Name            | Group       | Layer      |
|-------------------------------|----------------------------|-------------|------------|
| American elm                  | Ulmus americana            | Samara      | canopy     |
| Bois d' Arc                   | Maclura pomifera           | Achene      | canopy     |
| Catalpa (cigar tree)          | Catalpa speciosa           | Capsule     | canopy     |
| Cedar Elm                     | Ulmus crassifolia          | Samara      | canopy     |
| Green Ash                     | Fraxinus pennsylvanica     | Samara      | canopy     |
| Hackberry                     | Celtis laevigata           | Berry/Drupe | canopy     |
| Pecan                         | Carya illinoensis          | Nut/Nutlike | canopy     |
| Post Oak                      | Quercus stellata           | Acorn       | canopy     |
| Red Oak                       | Quercus shumardii          | Acorn       | canopy     |
| Black Willow                  | Salix nigra                | Capsule     | understory |
| Bois d' Arc                   | Maclura pomifera           | Achene      | understory |
| Cedar Elm                     | Ulmus crassifolia          | Samara      | understory |
| Chickasaw plum                | Prunus angustifolia        | Berry/Drupe |            |
| Chinese Privet                | Ligustrum sinese           | Berry/Drupe |            |
| Chinquapin Oak                | Quercus muehlenbergii      | Acorn       | understory |
| Deciduous Holly               | llex decidua               | Berry/Drupe |            |
| Eastern Red Cedar             | Juniperus virginiana       | Cone        |            |
| Eve's Necklace                | Sophora affinis            | Legume/Pod  | understory |
| Green Ash                     | Fraxinus pennsylvanica     | Samara      | understory |
| Gum Bumelia                   | Bumelia lanuginosum        | Berry/Drupe | understory |
| Hackberry                     | Celtis laevigata           | Berry/Drupe | understory |
| Hawthorn                      | Crataegus texana           | Berry/Drupe | understory |
| Honey Locust                  | Gleditsia triacanthos      | Legume/Pod  | understory |
| Mesquite                      | Prosopis glandulosa        | Legume/Pod  | understory |
| Mexican Plum                  | Prunus mexicana            | Berry/Drupe | understory |
| Post Oak                      | Quercus stellata           | Acorn       | understory |
| Rattlebush                    | Sesbania drummondii        | Legume/Pod  | understory |
| Roughleaf Dogwood             | Cornus drummondii          | Berry/Drupe | understory |
| Soapberry                     | Sapindus drummondii        | Berry/Drupe | understory |
| Wild Rose Bush                | Rosa sp.                   | Achene      | understory |
| Annual Ragweed                | Ambrosia artemisiifolia    | Achene      | herbaceous |
| Beaked Cornsalad              | Valerianella radiata       | Achene      | herbaceous |
| Bermuda                       | Cynodon dactylon           | Caryopsis   | herbaceous |
| Big Bluestem                  | Andropogon gerardii        | Achene      | herbaceous |
| Japanese Brome                | Bromus japonicus           | Caryopsis   | herbaceous |
| Bull Nettle                   | Cnidoscolus texanus        | Capsule     | herbaceous |
| Bushy Bluestem                | Andropogon glomeratus      | Achene      | herbaceous |
| Buttercup                     | Ranunculus sp.             | Achene      | herbaceous |
| Catchweed Bedstraw            | Galium aparine             | Schizocarp  | herbaceous |
| Clasping Venus' Looking-glass | Triodanis perfoliata       | Capsule     | herbaceous |
| Clover (yellow)               | Meliotus indicus           | Legume/Pod  | herbaceous |
| Cockspur Grass                | Echinochloa crus-pavonis   | Caryopsis   | herbaceous |
| Common Selfheal               | Prunella vulgaris          | Nut/Nutlike |            |
| Common Sunflower              | Helianthus annuus          | Achene      | herbaceous |
| Common Yarrow                 | Achillea millefolium       | Achene      |            |
| Coral Honeysuckle             | Lonicera sempervirens      | Berry/Drupe |            |
| Coralberry                    | Symphoricarpos orbiculatus | Berry/Drupe |            |
| Cross-vine                    | Bignonia capreolata        | Capsule     |            |
| Curly Dock                    | Rumex crispus              | Achene      |            |

## SPECIES LIST FOR PARKS COVER TYPE

| Dewberry               | Rubus trivialis             | Berry/Drupe | herbaceous |
|------------------------|-----------------------------|-------------|------------|
| Dotted Blue-eyed Grass | Sisyrinchium langloisii     | Capsule     | herbaceous |
| False Garlic           | Nothoscordum bivalve        | Achene      | herbaceous |
| Fern                   |                             | Other       | herbaceous |
| Fiddle Dock            | Rumex pulcher               | Achene      | herbaceous |
| Flameleaf Sumac        | Rhus copallinum             | Berry/Drupe | herbaceous |
| Flax                   | Linum sp.                   | Capsule     | herbaceous |
| Foxtail Grass          | Setaria sp.                 | Caryopsis   | herbaceous |
| Giant Ragweed          | Ambrosia trifida            | Achene      | herbaceous |
| Goldenrod              | Solidago sp.                | Achene      | herbaceous |
| Green Wild Indigo      | Baptisia sphaerocarpa       | Legume/Pod  | herbaceous |
| Greenbriar             | Smilax bona-nox             | Berry/Drupe | herbaceous |
| Honey Locust           | Gleditsia triacanthos       | Legume/Pod  | herbaceous |
| Illinois Bundleflower  | Desmanthus illinoensis      | Legume/Pod  | herbaceous |
| Indian Paintbrush      | Castilleja sp.              | Capsule     | herbaceous |
| Johnson Grass          | Sorghum halepense           | Caryopsis   | herbaceous |
| Little Bluestem        | Schizachyrium scoparium     | Achene      | herbaceous |
| Lyreleaf Sage          | Salvia lyrata               | Nut/Nutlike | herbaceous |
| Milkweed               | Asclepias sp.               | Follicle    | herbaceous |
| Nettle                 |                             | Achene      | herbaceous |
| Nightshade             | Solanum sp.                 | Berry/Drupe | herbaceous |
| Poison Hemlock         | Conium maculatum            | Schizocarp  | herbaceous |
| Poison Ivy             | Toxicodendron radicans      | Berry/Drupe | herbaceous |
| Prairie Peppergrass    | Lepidium densiflorum        | Silique     | herbaceous |
| Prickly Pear Cactus    | Opuntia sp.                 | Berry/Drupe | herbaceous |
| Purple Threeawn        | Aristida purpurea           | Caryopsis   | herbaceous |
| Quakinggrass           | Briza minor                 | Caryopsis   | herbaceous |
| Sensitive-briar        | Mimosa sp.                  | Legume/Pod  | herbaceous |
| Showy Evening Primrose | Oenothera speciosa          | Capsule     | herbaceous |
| Spurred Butterfly Pea  | Centrosema virginianum      | Legume/Pod  | herbaceous |
| Sunflower Family       | Aster sp.                   | Achene      | herbaceous |
| Texas Prairie Parsley  | Polytaenia texana           | Schizocarp  | herbaceous |
| Texas Vervain          | Verbena halei               | Nut/Nutlike | herbaceous |
| Trumpet Creeper        | Campsis radicans            | Capsule     | herbaceous |
| Vervain Family         |                             | Nut/Nutlike | herbaceous |
| Vetch                  | Vicia sp.                   | Legume/Pod  | herbaceous |
| Virginia Creeper       | Parthenocissus quinquefolia | Berry/Drupe | herbaceous |
| Virginia Wildrye       | Elymus virginicus           | Caryopsis   | herbaceous |
| White Clover           | Trifolium repens            | Legume/Pod  | herbaceous |
| Wild Onion             | Allium canadense            | Capsule     | herbaceous |
| Yellow Thistle         | Cirsium horridulum          | Achene      | herbaceous |

## LAND COVER ASSESSMENT MAP

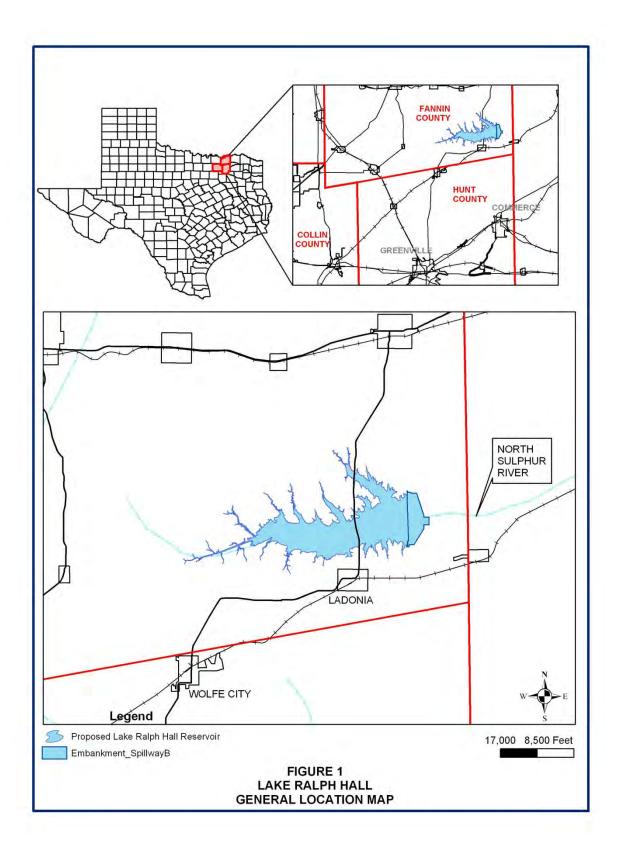


## F-2: Summary of SWAMPIM and WHAP Memorandum

#### **MEMORANDUM**

| Date:    | November 10, 2009                                                                                                                     |
|----------|---------------------------------------------------------------------------------------------------------------------------------------|
| То:      | Mary Verwers, United States Army Corps of Engineers                                                                                   |
| From:    | Jason Voight, Alan Plummer Associates, Inc.<br>Loretta Mokry, Alan Plummer Associates, Inc.                                           |
| Cc:      | Larry Patterson, P.E., Upper Trinity Regional Water District<br>Edward Motley, P.E., CH2MHill<br>File 0346-004-03                     |
| Subject: | USACE Project Number 2003-00336<br>Summary of SWAMPIM and WHAP Data Sets and Reports for the<br>Proposed Lake Ralph Hall Project Site |

#### Background


To date numerous reports and subsequent reports have been produced for the Lake Ralph Hall project documenting efforts conducted to assess aquatic resource functions as well as habitat quality. The following is a brief synopsis of the effort to date.

- August 2005 a draft Lake Ralph Hall Preliminary Habitat Assessment report documenting assessment of habitat and land cover within the project area using the Texas Parks and Wildlife Department's (TPWD) Wildlife Habitat Appraisal Procedure (WHAP) was circulated to the United States Army Corps of Engineers (USACE), U.S. Fish and Wildlife Department (USFWS), U.S. Environmental Protection Agency (USEPA), and the TPWD for review. During a project review meeting with Presley Hatcher (USACE Permits Chief) and Brent Jasper (USACE Project Manager for this project 2005-2008), the USACE provided a directive to use a functions based analysis rather than areal based analysis for developing appropriate mitigation for impacts associated with the project.
- January 2006 a project meeting was held with Presley Hatcher and Brent Jasper to discuss the outline for functions based analysis of Lake Ralph Hall. Comments were received from the USACE and incorporated into a draft Stream Watershed Assessment and Measurement Protocol Interaction Model (SWAMPIM) protocol for functional assessment of the Lake Ralph Hall project area.
- March 2006 the draft SWAMPIM protocol was submitted to the USACE for their review and comment; review comments were discussed at a project meeting with the USACE (Presley Hatcher and Brent Jasper).
- October 30, 2006 an application for a Section 404 permit was submitted to the Fort Worth District, USACE. The application included the Lake Ralph Hall Preliminary

Habitat Assessment dated December 6, 2005, the Biological Assessment of the North Sulphur River dated June 15, 2006, and the Draft Mitigation Plan dated October 26, 2006. The SWAMPIM protocol was used in the development of the mitigation plan to determine the existing aquatic resource functions of the project area and to project aquatic resource functions based on the mitigation proposal. A balance between pre- and post-project aquatic functions was shown to be obtainable within the proposed project boundary.

- February 4, 2009 an interagency meeting was hosted at the Lake Belton USACE office. At this meeting, a presentation was provided to the team to discuss the development of the SWAMPIM protocol and its application for assessing existing and post-project aquatic resources, which was used as the basis for the proposed draft mitigation plan. The interagency review team agreed to the use of the SWAMPIM and WHAP protocols for aquatic resource function and habitat assessment respectively within the Lake Ralph Hall project area. During the meeting, the agencies requested assessment of additional sampling points within the proposed mitigation areas along the upper reaches of tributaries to the North Sulphur River and within the Ladonia Unit of the Caddo National Grasslands. Attendees included representatives from the USACE, the U.S. Fish and Wildlife Department, the Texas Commission on Environmental Quality, the U.S. Forest Service, Upper Trinity Regional Water District, CPYI, CH2MHill, and Alan Plummer Associates, Inc.
- July 2009 USACE agreed to the proposed additional sampling points for SWAMPIM and WHAP assessment.
- August 24-29, 2009 representatives from APAI assessed the additional sampling points using SWAMPIM for the stream channels and WHAP for terrestrial habitat.
- September 16, 2009 the interagency review team participated in a field review of the additional sampling points. Based on the input received from the interagency review team during the on-site field review, the data sheets were revised for the additional sampling points. Attendees included representatives from the USACE, the U.S. Fish and Wildlife Service, the U.S. Environmental Protection Agency, the Texas Parks and Wildlife Department, the Texas Commission on Environmental Quality, Upper Trinity Regional Water District, CPYI, CH2MHill, and Alan Plummer Associates, Inc.

A general location map is provided as Figure 1.



# Discussion of the Data within the Draft Mitigation Plan (dated October 26, 2006) to the Data Reassessed After 2009 Agency Review

#### Wildlife Habitat Appraisal Procedure (WHAP)

On-site observations conducted during spring and summer 2005 were used to assess habitat quality and desktop analysis of a 2003 aerial photograph was used to quantify the areal extent of specific land cover categories within the proposed Lake Ralph Hall project area. The following table (Table 1) details the data presented in the draft mitigation plan dated October 26, 2006. As of the time of the mitigation submittal, the project area, excluding aquatic resources, consisted of 22 percent cropland, 19 percent grasses, 28 percent pasture, 7 percent partially wooded grassland (parklike), 8 percent forest, and 16 percent young forest. The two forested communities displayed the highest habitat quality scores.

| Cover-type Category           | Average Habitat Quality<br>Score (HQ) | Total Area (Acres) | Habitat Units (HQxArea) |
|-------------------------------|---------------------------------------|--------------------|-------------------------|
| Cropland                      | 0.09                                  | 1,720              | 154.8                   |
| Grasses                       | 0.25                                  | 1,435              | 358.75                  |
| Pasture                       | 0.2                                   | 2,192              | 438.4                   |
| Partially Wooded<br>Grassland | 0.41                                  | 516                | 211.56                  |
| Forest                        | 0.59                                  | 602                | 355.18                  |
| Young Forest                  | 0.44                                  | 1,299              | 571.56                  |
| Т                             | otal                                  | 7,764              | 2,090.25                |

 Table 1: Wildlife Habitat Appraisal Procedure Data As Presented in the Draft Mitigation Plan

During the September 16, 2009 agency review, not all habitat cover-types were included in the assessment of additional sampling points. Only cropland, pasture, forest, and young forest cover types were reassessed during the September 2009 interagency site field review. Of the habitat cover types that were assessed in 2009, habitat quality scores were adjusted both upwards and downwards from the comments received. The following illustrates the habitat quality scoring for data gathered at the additional sampling points pre- and post-agency review.

| Site         | Pre-Agency Visit | Post-Agency Visit |
|--------------|------------------|-------------------|
| Cropland     | 0.15             | 0.20              |
| Pasture      | 0.18             | 0.17              |
| Forest       | 0.44             | 0.44              |
| Young Forest | 0.53             | 0.48              |

Scores for cropland improved, forest remained unchanged, but both pasture and young forest were downgraded slightly. All in all, there was less than one percent change downward from the pre-agency field review to the post-agency field review when all scores were summed (1.3 pre-agency review compared to 1.29 post-agency review).

When the scores for the additional sampling points are included with the original data for habitat assessment for the entire project area, the habitat quality scores decreased slightly from the values presented in the draft mitigation plan from 2,090.25 to 2,083.81, as shown in Table 2.

| incorporated into the Entire Habitat Assessment |                                       |                    |                         |  |
|-------------------------------------------------|---------------------------------------|--------------------|-------------------------|--|
| Cover-type Category                             | Average Habitat Quality<br>Score (HQ) | Total Area (Acres) | Habitat Units (HQxArea) |  |
| Cropland                                        | 0.12                                  | 1,720              | 206.4                   |  |
| Grasses*                                        | 0.25                                  | 1,435              | 358.75                  |  |
| Pasture                                         | 0.19                                  | 2,192              | 416.48                  |  |
| Partially Wooded<br>Grassland*                  | 0.41                                  | 516                | 211.56                  |  |
| Forest                                          | 0.53                                  | 602                | 319.06                  |  |
| Young Forest                                    | 0.44                                  | 1,299              | 571.56                  |  |
| Total                                           |                                       | 7,764              | 2,083.81                |  |

 Table 2: Wildlife Habitat Appraisal Procedure Following September 2009 Agency Review

 Incorporated into the Entire Habitat Assessment

\*Represents data used from the mitigation plan assessment

As illustrated above, the WHAP data used in the draft mitigation plan is consistent with the postagency field review data. Figure A-1 in Attachment A illustrates the WHAP data points for all assessments. The WHAP protocol and all WHAP data sheets are included in Attachment A.

## Stream Watershed Assessment and Measu rement Protocol Interaction Model (SWAMPIM)

The primary goal of the draft mitigation plan is to provide compensation to existing aquatic resource functions and terrestrial habitats impacted by the construction of the Lake Ralph Hall project on a watershed basis rather than on an areal basis. The SWAMPIM protocol was developed to facilitate development of a functions based mitigation plan by assessing existing conditions and functions capacity and projecting future functions capacity of the project area with the proposed Lake Ralph Hall in place. The SWAMPIM protocol accounts for functions and watershed interactions of both streams and impoundments. The following table (Table 3) summarizes the results of the pre- and post-project functional capacities for streams and impoundments as outlined in the draft mitigation plan.

| 1 Ian dated October 20, 2000    |                |                           |              |                      |  |  |
|---------------------------------|----------------|---------------------------|--------------|----------------------|--|--|
|                                 | Pre-P          | roject                    | Post-Project |                      |  |  |
| STREAMS                         | Linear Feet of | Linear Feet of Functional |              | Functional           |  |  |
|                                 | Stream         | Capacity                  | Stream       | Capacity             |  |  |
| Within Conservation<br>Pool     | 589,066        | 532.98                    | 74,546       | 361.11               |  |  |
| Outside of<br>Conservation Pool | 113,111        | 94.43                     | 113,111      | 165.94               |  |  |
| Former NSR                      | 11,020         | 22.59                     |              |                      |  |  |
| Restored NSR                    |                |                           | 14,500       | 125.08               |  |  |
| Total                           | 124,131        | 650.0                     | 202,157      | 652.13               |  |  |
|                                 | Pre-Project    |                           | Post-Project |                      |  |  |
| IMPOUNDMENTS                    | Area (Acres)   | Resource<br>Capacity      | Area (Acres) | Resource<br>Capacity |  |  |
| Within Conservation<br>Pool     | 72.5           | 30.83                     | 7,566        | 5,783.5              |  |  |
| Outside of<br>Conservation Pool | 40.7           | 16.58                     | 40.7         | 16.58                |  |  |
| Total                           | 113.2          | 47.41                     | 7,606.7      | 5,800.08             |  |  |

 Table 3: Functional Capacities for Streams and Impoundments as Outlined in the Draft Mitigation

 Plan dated October 26, 2006

#### Streams

The North Sulphur River and its tributaries within the proposed Lake Ralph Hall project area are characterized as intermittent (North Sulphur River) and ephemeral (tributaries) which do not retain water in perennial pools during periods of insufficient rainfall. Based on observations of this character during field work conducted in 2006 and for the additional sampling points in August 2009, the SWAMPIM scoring for some functional parameters was zero. During the interagency field review, some agency team members expressed the opinion that the scoring of zero for these parameters based on no flow observed was unduly penalizing ephemeral streams. Based on the input received during the field review, data for the additional sampling points were upgraded for the various parameters that dealt with no water in the channel. The comparison of the pre-agency to post-agency field review functional capacity scores for the additional sampling points is as follows:

| Site #      | Pre-Agency Visit FC | Post-Agency Visit FC |
|-------------|---------------------|----------------------|
| N6          | 11.1                | 12.4                 |
| N16         | 11.1                | 11.0                 |
| N21         | 17.7                | 17.0                 |
| N21-Trib 18 | 1.4                 | 1.3                  |
| N27         | 5.7                 | 7.3                  |
| S52         | 12.4                | 14.3                 |
| S52-Trib 6  | 1.0                 | 0.75                 |
| S56         | 7.0                 | 6.8                  |
| S61         | 6.8                 | 9.1                  |

The data obtained from the post-agency field review was incorporated into the overall functional capacity data outlined in the draft mitigation plan. As shown in Table 4 when incorporating the post-agency reassessment data, the pre-project functional capacity within conservation pool decreased slightly whereas the outside of conservation pool functional capacity increased slightly.

| Table 4: Comparison of Functional Capacity Scores from the Mitigation Plan and the 2009 |
|-----------------------------------------------------------------------------------------|
| Reassessment                                                                            |

| Pre-Project<br>Streams   | Linear Feet<br>of Stream | Mitigation<br>Plan<br>Functional | 2009<br>Reassessment<br>Functional |  |
|--------------------------|--------------------------|----------------------------------|------------------------------------|--|
|                          |                          | Capacity                         | Capacity                           |  |
| Within Conservation      | 589,066                  | 532.98                           | 519.30                             |  |
| Pool                     | 507,000                  | 552.70                           | 517.50                             |  |
| Outside of               | 113,111                  | 94.43                            | 95.69                              |  |
| <b>Conservation Pool</b> | 113,111                  | 74.43                            | 95.09                              |  |
| Former NSR               | 11,020                   | 22.59                            | 22.59                              |  |
| Total                    | 124,131                  | 650.0                            | 637.58                             |  |

The summary tables for the 2006 and 2009 pre- and post-project stream functional capacity calculations are included in Attachment B. These tables provide the linear feet and functional capacity index score for the stream channel categories identified by channel widths and the

corresponding functional capacity score for each category. As presented, the functional capacity indices outlined in the draft mitigation plan provided a more conservative picture of the aquatic resource functions within the proposed Lake Ralph Hall project area.

#### **On-channel Impoundments**

No changes were made to on-channel impoundments from what was presented in the draft mitigation plan. The interagency review team did not express any comments or concerns regarding the functional capacity scores presented for the impoundments. However, it should be noted that the pre-project resource capacity for existing impoundments scored a 47.41 whereas the post-project resource capacity with the construction of Lake Ralph Hall scored 5,800.08. Lake Ralph Hall grossly improves the post-project impoundment aquatic resource.

Figure B-1 in Attachment B illustrates the SWAMPIM data points used during the original assessments and the additional sampling points for the assessed in August 2009. The SWAMPIM protocol and all SWAMPIM data sheets are included in Attachment B.

#### Summary

Based on the mitigation proposal, a functional capacity score of 652.21 was primarily obtained through increased habitat potential, development of perennial pools within channels upstream of the conservation pool of the reservoir, and a decrease in erosion due to the curbing of current on-going head cutting. In keeping with the USACE's directive of mitigating this project through a functions based assessment, both the 2006 and 2009 pre-project functional capacity scores of 650.0 and 637.58 respectively are at or below the projected functional capacity improvements to the project area.

## F-3: Biological Assessment of the North Sulphur River

# ATTACHMENT 5 BIOLOGICAL ASSESSMENT OF NORTH SULPHUR RIVER

# PREPARED BY ALAN PLUMMER ASSOCIATES, INC.





#### MEMO

TO: Chris Loft Texas Commission on Environmental Quality FROM: Bob Brandes foletthe Lorder

DATE: October 30, 2006

SUBJECT: Biological Sampling of the North Sulphur River and Instream Flow Requirements for Lake Ralph Hall

As we have discussed on several occasions, development of appropriate instream flow requirements for the proposed Lake Ralph Hall on the North Sulphur River is a challenge because of the unique eroded nature of the river channel, the occurrence of significant river flows in the vicinity of the dam site only immediately after substantial rainfall events, the absence of any significant habitat within the river channel to support a viable aquatic ecosystem, and the fact that biological organisms often are not found in the river at all because its channel is essentially dry. To document these conditions and obtain site-specific data in the vicinity of the proposed dam site, the Upper Trinity Regional Water District (UTRWD), the project sponsor, commissioned Alan Plummer Associates, Inc. (APAI) to undertake a biological sampling program on the river earlier this year. These sampling efforts and their results are described in two letters from APAI dated June 15, 2006 and August 28, 2006, both of which are attached hereto as Attachments A and B, respectively.

It is apparent from the results from these field studies that the biological resources of this reach of the North Sulphur River are fairly limited, even with pools of water in the river channel following a series of small rainfall events as occurred prior to and during the May 5<sup>th</sup> sampling activity<sup>1</sup>. Only of a small variety of freshwater invertebrates were collected from the pools, with no fish species observed. Again, without rainfall, the channel of the river is essentially dry. As observed during the August 24<sup>th</sup> and 25<sup>th</sup> sampling event when no rainfall had previously occurred, there was no water present in the river channel and no biological activity.

Based on the results from the sampling that has been conducted by APAI, it is apparent that there is no significant existing biological community or aquatic ecosystem within the river channel that is sustained by the ephemeral flows that periodically occur in the river. At best, as described by APAI, the organisms that do occur are "opportunists" that are temporarily sustained by the occasional pools of water that occur after rainfall events and the temporary habitat that these

<sup>&</sup>lt;sup>1</sup> About 1.5 inches of precipitation fell in the vicinity of the proposed Lake Ralph Hall dam site during the two weeks prior to the May 5<sup>th</sup> sampling event.

Mr. Chris Loft October 30, 2006 Page 2 of 3

pools provide. For this reason, it would appear that the development of some form of instream flow regime to attempt to mimic what occurs, or doesn't occur, naturally in the river under existing conditions would be difficult at best and may not be warranted. Instead, it might be more productive from a biological standpoint to utilize a portion of the inflows to Lake Ralph Hall, or some of the stored water in Lake Ralph Hall, to support a more viable ecosystem such as that being proposed by the UTRWD for restoration along a segment of the abandoned original channel of the North Sulphur River immediately below the dam.

As you know, we originally included in our water availability and yield analysis of Lake Ralph Hall a set of monthly instream flow requirements as a placeholder pending the development of more appropriate and meaningful information. These earlier instream flow requirements were derived using the Lyons desktop method applied to historical daily flow records from the existing streamflow gage on the North Sulphur River near Cooper. These calculations are summarized in the table included herewith as Attachment C, and as shown, even these estimated instream flow needs exhibit essentially zero values for four months of the year, i.e., July through October. Based on actual observations of the river flow in the vicinity of the dam site, it is obvious that the flows in the other eight months of the year certainly are not sustained at the levels indicated in the table, but rather are also zero the vast majority of the time when it is not raining in the river's upper watershed.

There is geologic evidence that there are certain formations along the channel of the North Sulphur River downstream of the dam site and closer to the streamflow gage near Cooper that potentially support sustained spring discharges, or at least seeps, for prolonged periods following rainfall events. Particularly, the Wolfe City and Pecan Gap sands are known to be characterized by such discharges. There is the possibility that it is the discharges from these formations that account for some of the observed river flows at the streamflow gage on the North Sulphur River near Cooper during the December-through-June period that result in the corresponding higher instream flow values derived with the Lyons method. It may be that this lower reach of the proposed Lake Ralph Hall dam site, and that the use of these flows to establish instream flow requirements for Lake Ralph Hall is not appropriate.

Enclosed with this memo is a copy of a video taken from a helicopter on October 11, 2005 of the reach of the North Sulphur River from the State Highway 24 crossing about 20 miles downstream of the proposed Lake Ralph Hall dam site (where the streamflow gage near Cooper is located) upstream to State Highway 68, which is about ten miles above the proposed Lake Ralph Hall dam site. This video clearly shows essentially no water in the river for about ten miles upstream and ten miles downstream of the proposed the Lake Ralph Hall dam site, but it does indicate the presence of isolated shallow pools of water along the lower segment of the river upstream of the streamflow gage near Cooper at the State Highway 24 crossing. Rainfall records for the area indicate that about one-half inch of precipitation fell in the watershed above the dam site on September 24<sup>th</sup>, followed by a few tenths of an inch of rainfall on September 28<sup>th</sup> and traces of rainfall on September 24<sup>th</sup>, with another half inch on September 28<sup>th</sup>, thus contributing to the pools of water shown in the river channel above the gage.



Mr. Chris Loft October 30, 2006 Page 3 of 3

As an alternative approach for providing for environmental flows, the UTRWD proposes to make all of the low-flow releases from Lake Ralph Hall, to the extent possible, through an outlet that contributes flows directly to the proposed restoration segment of the abandoned channel of the North Sulphur River located immediately below the dam in the south floodplain of the river. The balance of these flows not consumed within the restored segment of the abandoned river channel would be discharged back into the existing river channel through a controlled outlet structure, thus providing some sustained flow in the river for a short distance. While the design of the channel restoration project is still in progress, the low-flow releases from the reservoir to the restored channel will provide the necessary flow regime required to maintain the restored wetland area, with only part of this flow actually being consumed within the restored channel itself. Current plans for the project call for approximately 14,500 linear feet of the abandoned river channel on the south floodplain of the river to be excavated and restored, with plantings for creation and enhancement of riparian zones, wetlands, and corridors connecting to adjacent terrestrial habitat. In a river bottom area void of such conditions, this seems to be a much more appropriate and productive use of water from the river for environmental purposes than simply passing it downstream to flow through the existing barren and eroded channel of the river with no sustained habitat or biological resources.

In summary, the UTRWD is requesting that you give serious consideration to the approach described herein for providing appropriate environmental flows and for meeting the TCEQ's obligations for assuring that the proposed Lake Ralph Hall project will not adversely impact instream uses or water quality. We believe that the proposed approach will be an effective means for restoring riverine habitat in the area. As plans for the proposed river channel restoration project continue to evolve, we will keep you apprised of how the project will be configured and operated, and we would welcome any suggestions you might have for its improvement. In the meantime, if you have questions regarding what is being proposed, we will be glad to discuss them with you. Or if you want to visit the site and see firsthand the segment of the abandoned river channel that is being proposed for restoration, please let us know and we will be happy to arrange such a trip.

We appreciate your help with this effort and look forward to your comments regarding the approach being proposed by the UTRWD.

## ATTACHMENT A

Letter Dated June 15, 2006 from Alan Plummer Associates, Inc. to Edward Motley, Chiang, Patel and Yerby, Inc.

RB



JAMES C. ACTSTAETTER, P.E. STEPHEN L COONAN, P.E. PEGGY W GLASS, Ph.D. DAVID A. GUDAL, P.E. BETTY L. IORDAN, P.E. ALAN H PLUMMER, JR., PE., DEE RICHARD H SMITH PE. ALAN R.TUCKER, PE

346-0402

June 15, 2006

Mr. Edward Motley, P.E. Chiang, Patel, and Yerby, Inc. 1820 Regal Row, Suite 200 Dallas, Texas 75235

ALAN PLUMMER ASSOCIATES, INC

RE: Biological Assessment of the Aquatic Community of the North Sulphur River

Dear Mr. Motley:

Samplings for the biological assessment study were conducted on May 5 and 10, 2006 to determine the type and extent of aquatic biological resources at three sampling locations within the North Sulphur River in the vicinity of the proposed Lake Ralph Hall dam site. The sampling locations were selected based on accessibility and their relationship to the proposed dam location to provide insight as to the degree of environmental flows required to support the existing aquatic ecosystem downstream of the dam. Prior to the on-site investigation, a procedure was developed based on existing sampling protocols, specifically the United States Environmental Protection Agency's Rapid Bioassessment Protocol for Streams and Wadeable Rivers (second edition) and the Texas Commission on Environmental Quality's (TCEQ) Surface Water Quality Monitoring Program, Habitat Assessment.

The locations of the three sampling stations are shown on Figure A-1, included in Attachment A. The three sampling stations were located upstream of the State Highway (SH) 34 Bridge, downstream of the Farm to Market Road (FM) 904 Bridge, and downstream of the SH 38 Bridge. The SH 34 site is located approximately 2.5 upstream of the proposed dam, and the most downstream site at SH 38 is about 7.5 miles below the dam. The FM 904 site is only about 1.5 miles downstream of the proposed dam site. Photographs from the on-site investigations of the sampling locations are also included in Attachment A.

At each of the three sampling locations, six pools were identified in the field to collect samples using three sampling techniques for each identified pool: 1) D-frame aquatic dip net for invertebrates, fish, and amphibians; 2) the Surber Stream Sampler for benthic invertebrates; and 3) a kick net for collecting large and small organisms in open water. The Surber Sampler is primarily used in flowing streams where the substrate is stirred allowing invertebrates to dislodge and flow downstream into the sampling net. However, due to the fact that there was not flow in the North Sulphur River at the time of the on-site investigations, samples from the Surber did not fully represent the community within the selected pool. The protocol for kick net sampling consists of sampling for a pre-determined time using a hand-held

220 SOUTH UNIVERSITY DRIVE í E 300 FORT WORTH TEXAS 76107-5737 PHONE 817-806-1700 METRO 817-870-2544 SAX 817-879-2536 www.xpaitsw.com

Mr. Edward Motley, P.E. June 15, 2006 Page 2 of 4

rectangular net. The collector stirs the substrate within the pool for five minutes while an assistant holds the net downstream and collects the sample. Since there was a lack of discernable flow and due to the shallow depths of the selected pools within the North Sulphur River, a field determination was made to use the D-frame aquatic dip net in lieu of the kick net. The collector walked in a clockwise direction in front of the D-frame aquatic dip net stirring the substrate within the pool for a total five minutes. The resulting D-frame samples provided a more detailed cross-section of the representative community within the various pools. Since a greater quantity of biota was collected with the D-frame, those samples were preserved and processed in the lab whereas the Surber samples were processed in the field.

In conjunction with the biological assessment, at each sampling location, a score was generated for the North Sulphur River's Functional Condition Index.<sup>1</sup> The data sheets from that assessment are included in Attachment B. Lastly, TCEQ's Surface Water Quality Monitoring Habitat Assessment was performed for each the three sampling locations. The descriptions of the physical parameters observed and the resulting scores from the habitat assessment are as follows:

#### <u>SH 34</u>

The pools sampled averaged approximately 20 meters by 15 meters with depths ranging from five to ten centimeters. The substrate consisted of clayey shale with some gravels intermixed. The shale observed was exposed bedrock. No discernable flow was observed and the water clarity was good. No rooted vegetation was observed. However, some detritus and filamentous algae were observed. The data collected were compiled into TCEQ's habitat assessment worksheet and the sampling location scored a 6, which is a habitat quality index of limited (poor). As an independent measure of the functional value of this location, the functional condition index for this sampling location is 0.31 out of a total possible score of 3.0.

#### FM 904

The pools sampled averaged approximately 15 meters by 10 meters with depths ranging from five to 22 centimeters. The substrate consisted of clayey shale with some gravels intermixed. The shale observed was exposed bedrock. No discernable flow was observed and the water clarity was good. No rooted vegetation was observed. However, some detritus and filamentous algae were observed. The data collected were compiled into TCEQ's habitat assessment worksheet and the sampling location scored a 4, which is a habitat quality index of limited (poor). As an independent measure of the functional value of this location, the functional condition index for this sampling location is 0.53 out of a total possible score of 3.0.

#### <u>SH 38</u>

<sup>&</sup>lt;sup>t</sup> The Functional Condition Index is a score based on a proposed method for evaluating stream functions. The proposed system is based on protocols used elsewhere in the United States. The proposed functional assessment protocol has not been approved by the USACE or any other regulatory agency.

Mr. Edward Motley, P.E. June 15, 2006 Page 3 of 4

The pools sampled averaged approximately 40 meters by 25 meters with depths ranging from five to 15 centimeters. The substrate consisted of clayey shale with some gravels intermixed. The shale observed was exposed bedrock. No discernable flow was observed and the water clarity was good. No rooted vegetation was observed. However, some detritus and filamentous algae were observed. The data collected were compiled into TCEQ's habitat assessment worksheet and the sampling location scored a 7, which is a habitat quality index of limited (poor). As an independent measure of the functional value of this location, the functional condition index for this sampling location is 0.47 out of a total possible score of 3.0.

From the three sampling locations, a variety of freshwater invertebrates were collected utilizing the aforementioned sampling techniques. The following table summarizes the total number of specimens collected for each sampling technique at each location. These numbers represent the total number of species identified at each of the six pools within the three sampling locations.

|                    |                               | Hwy 38 Bridge |                    | Hwy 904 Bridge |                    | Hwy 34 Bridge |                    |
|--------------------|-------------------------------|---------------|--------------------|----------------|--------------------|---------------|--------------------|
| Family Common Name |                               | Surber        | D-Frame<br>Dip Net | Surber         | D-Frame<br>Dip Net | Surber        | D-Frame<br>Dip Net |
| Amphipoda          | Scuds                         | 0             | 1                  | 2              | 0                  | 0             | 6                  |
| Baetidae           | Mayflies                      | 0             | 6                  | 0              | 4                  | 1             | 23                 |
| Caenidae           | Mayflies                      | 38            | 361                | 155            | 811                | 41            | 425                |
| Cambaridae         | Crayfish                      | 0             | 0                  | 0              | 0                  | 0             | J                  |
| Ceratopogonidae    | Flies and Midges              | 0             | 21                 | 2              | 13                 | 0             | 22                 |
| Chironomidae       | Flies and Midges              | 84            | 591                | 92             | 288                | 75            | 934                |
| Cladocera          | Water Fleas                   | 0             | 0                  | 0              | 0                  | 284           | 56                 |
| Coenagrionidae     | Damselflies                   | 0             | 0                  | 0              | 2                  | 0             | 0                  |
| Collembula         | Spring Tails                  | 0             | 0                  | 0              | 0                  | 0             | 1                  |
| Copepoda           | Tiny Crustaceans              | 0             | 3                  | 0              | 0                  | 0             | 7                  |
| Corixidae          | Aquatic and Semi-Aquatic Bugs | 71            | 136                | 3              | 3                  | 4             | 53                 |
| Culicidae          | Mosquitoes                    | 2             | 50                 | 17             | 19                 | 1             | 38                 |
| Dolichopodidae     | Flies and Midges              | 0             | 0                  | 0              | 0                  | 2             | 3                  |
| Gyrinidae          | Water Beetles                 | 0             | 8                  | 0              | 0                  | 2             | 5                  |
| Haliplidae         | Water Beetles                 | 0             | 0                  | 0              | 0                  | 0             | 4                  |
| Heptageniidae      | Mayflies                      | 0             | 0                  | 1              | 1                  | 0             | 0                  |
| Hydracarina        | Water Mites                   | 0             | 2                  | 6              | 0                  | 0             | 1                  |
| Hydrophilidae      | Water Beetles                 | 0             | 14                 | 5              | 15                 | 5             | 25                 |
| Libellulidae       | Dragonflies                   | 3             | 12                 | 8              | 24                 | 3             | 55                 |
| Ostracoda          | Seed Shrimp                   | 0             | 38                 | 0              | 0                  | 0             | 48                 |
| Planorbidae        | Freshwater Snail              | 0             | 0                  | 0              | 0                  | 0             | I                  |

Descriptions of the ecology for the identified species are included in Attachment C.

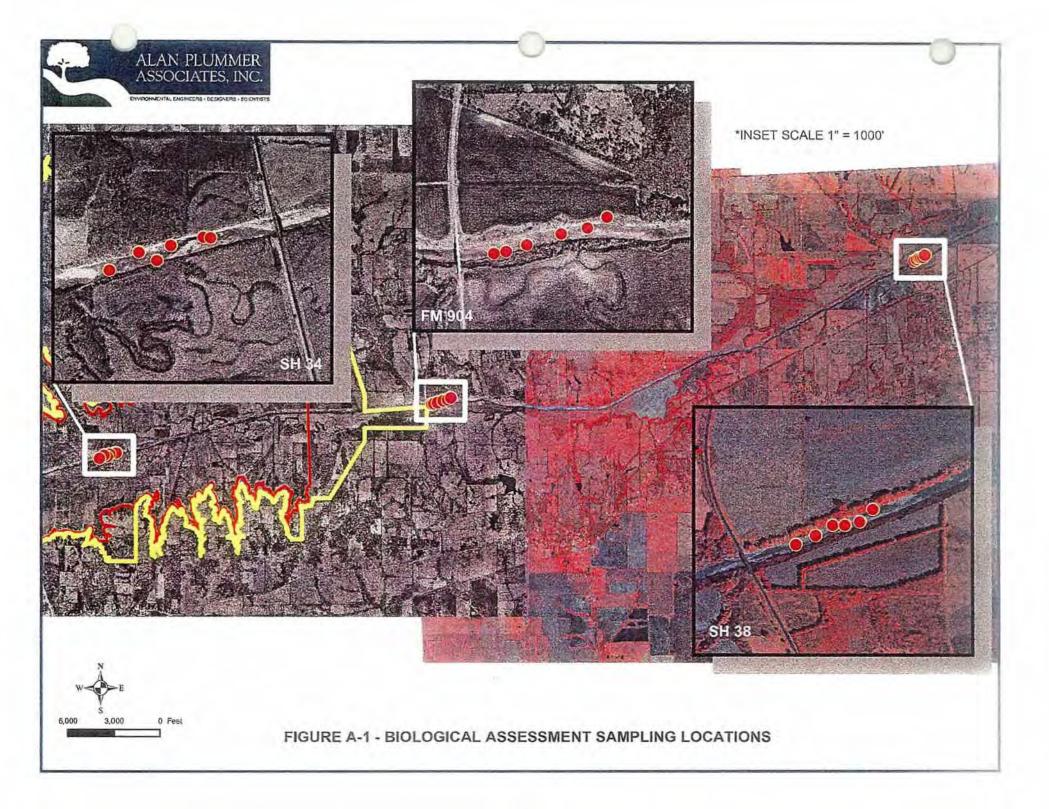
#### **SUMMARY**

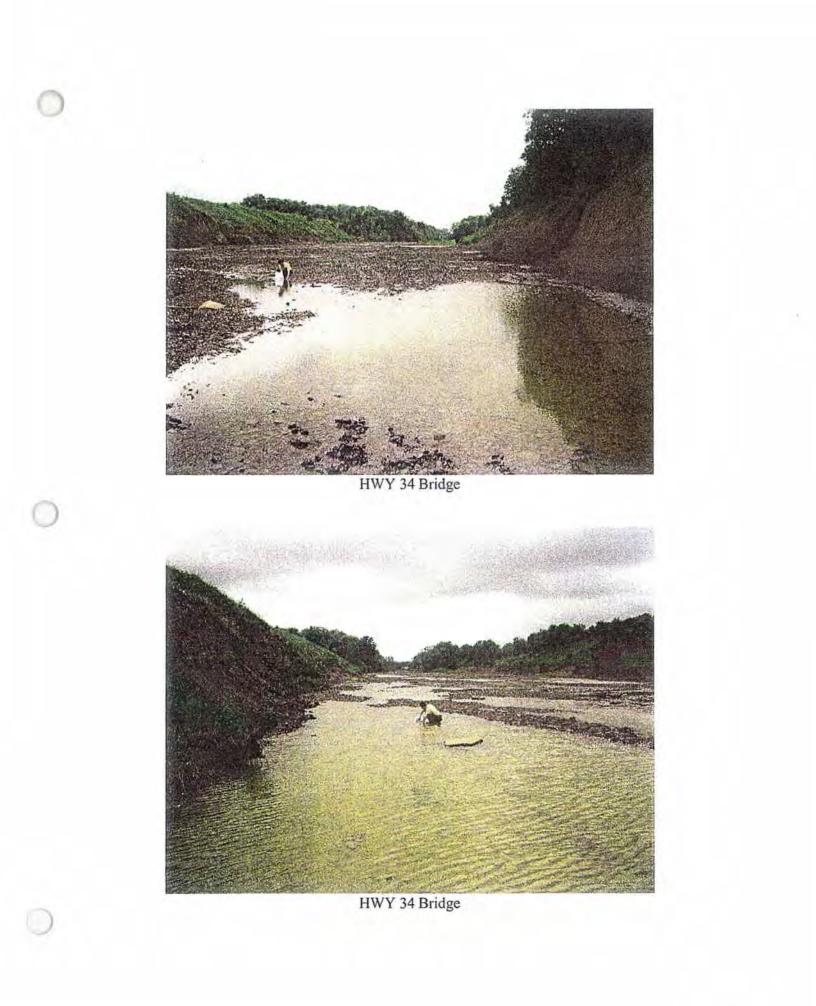
The two most abundant families of invertebrates identified include Caenidae and Chironomidae at 39 and 44 percent, respectively. Both of these families are more Mr. Edward Motley, P.E. June 15, 2006 Page 4 of 4

tolerant of degraded streams and low dissolved oxygen conditions. It should be noted that all of the aforementioned invertebrates occur in areas typically found along the North Sulphur River including ponds, stock tanks, and ephemeral tributaries. During the on-site investigation, there were areas within the sampling locations where algae were colonizing thereby providing some habitat for the aforementioned species. Furthermore, detritus, decomposing shale sediment, and rooted terrestrial vegetation (e.g., Johnsongrass and rattlebush) were observed within the channel. This accumulation of sediment and rooted vegetation is most likely a product of the recent deficit of significant rainfall events in the area due to the extended drought conditions. Observations of the river channel in 2004 during a more normal rainfall period indicated that the channel is routinely scoured by flow resulting from typical rain events. This scouring includes removal of the oxidized shale in the river bottom, precluding any vegetative growth including algae. It should also be noted that the sampling was scheduled during spring rain events to ideally provide information when hopefully there was flow in the North Sulphur River. A rainfall event did occur on the morning of May 5th. However, this rain did not produce any detectable flow in the river. The limited pools within the river channel appeared to form more from seepage from small impoundments within the watershed, which enters the river channel along the shale bedrock layer.

The invertebrates identified during the sampling studies are common and abundant throughout the area and would be expected to colonize ephemeral to intermittent pools within the North Sulphur River even in the absence of river flow. The fact that flow in the river occurs only in response to rain events, leaving the bed of the river essentially dry the vast majority of the time would strongly suggest that a sustainable community of aquatic organisms (including invertebrates) cannot and does not exist within the river channel. The organisms observed are opportunists, temporarily sustained by the ephemeral pools and the limited temporal habitat these pools provide.

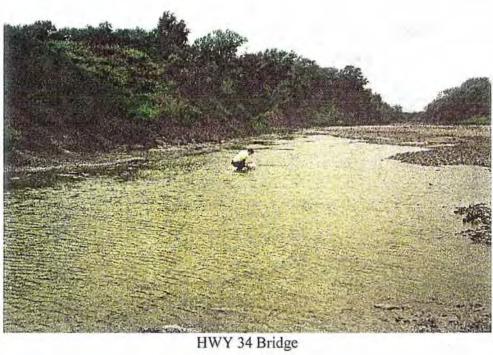
Should you have comments or questions, please feel free to phone either Loretta Mokry or myself at (817) 806-1700.


Sincerely,


ALAN PLUMMER ASSOCIATES, INC.

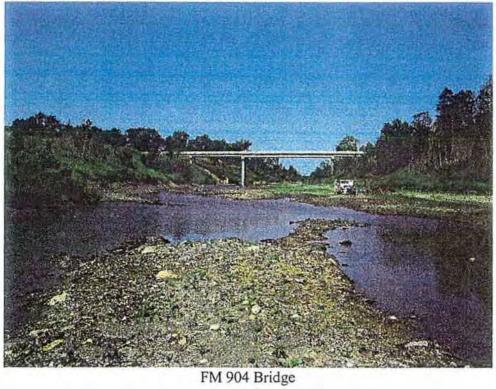
Jason Voigh

Attachments

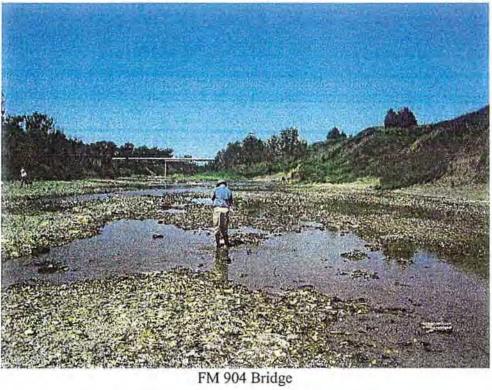

## ATTACHMENT A





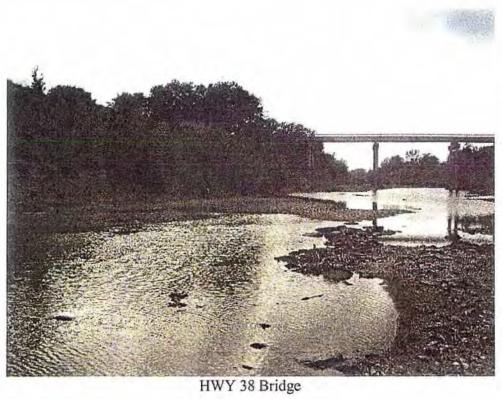



HWY 34 Bridge



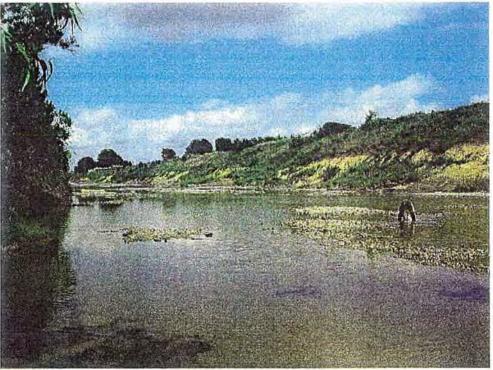



FM 904 Bridge








HWY 38 Bridge





HWY 38 Bridge



HWY 38 Bridge

## ATTACHMENT B

| DROLOGIC FUN                       | CTIONS                                                                   | 05\05\2006 Highway                                                              | 34 Bridge                                                                                                                | SCORE    | Reference<br>Source             |
|------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|----------|---------------------------------|
| 1. FLOW REGIME                     |                                                                          |                                                                                 |                                                                                                                          | ]        | KDWP 2000                       |
| TYPE                               | Perennial                                                                | Intermittent w/ Perennial Pools                                                 | Intermittent Ephemeral                                                                                                   |          | Kansas                          |
| Grade<br>2. CHANNEL COI            | 10 9 8                                                                   | 7 6 5<br>ervation of Stream Channel Condition                                   |                                                                                                                          | 4        | Subjective                      |
| 2. OTRANILL COL                    | ADITION, Measurement of ODS                                              | STABOL OF GREEN CHAINER COLORI                                                  |                                                                                                                          | -        |                                 |
|                                    | 0-1                                                                      | CONDITION CATEGORY                                                              |                                                                                                                          |          | Barbour, 1999<br>EPA RBA pag    |
|                                    | Oplimal<br>Natural channet; no structures of                             | Suboptimal<br>r Some channelization (usually in                                 |                                                                                                                          | -        | 5-21; Newtor                    |
|                                    | channelization minimal. No evider                                        | ce bridge areas) or past channel                                                | of the reach channelized widening. >80% of the reach riprap of or disrupted. Excess channelized. Degradation dikes of    |          | 1998 USDA                       |
| 2a.Channel                         | of downcutting or excessive late<br>cutting. Normal frequency of         | recovery of channel bed and bank                                                | aggradation; braided levees prevent access to the                                                                        |          | NRCS SVAP<br>page 7             |
| Condition/Alter<br>ation (natural, | hydrological connection betwee<br>channel and floodplain.                | <ul> <li>Acceptable frequency of overbani<br/>flows onto floodplain.</li> </ul> | channel with excessive floodplain.                                                                                       |          | page (                          |
| altered, or                        | chainer and noophain,                                                    | notra orno neocpiane.                                                           | flows onto the floodplain.                                                                                               |          |                                 |
| downcutting)                       |                                                                          |                                                                                 | Historical Incision, dikes<br>or levees restrict                                                                         |          |                                 |
|                                    |                                                                          |                                                                                 | floodplain.                                                                                                              |          |                                 |
|                                    |                                                                          |                                                                                 |                                                                                                                          |          |                                 |
|                                    |                                                                          |                                                                                 |                                                                                                                          |          |                                 |
| Grade                              | 10 9 8                                                                   | 7 6 5                                                                           | 4 3 2 1 0                                                                                                                | 0        |                                 |
|                                    |                                                                          |                                                                                 |                                                                                                                          | -        | w/ posintenne                   |
| 2h Olympic                         | Optimal                                                                  | CONDITION CATEGORY<br>Suboplimal                                                | GRADE or SCORE Poor                                                                                                      | 1        | w/ assistance<br>and input fror |
| 2b.Channel<br>Capacity to          | Channel Capacity to Flow Frequen                                         | cy Channel Capacity to Flow Frequenc                                            | y Channel Capacity to Channel Capacity to Flow Frequence                                                                 | У        | Dr. Mike                        |
| Flow                               | Ratio is such that bank overflow fr<br>storm events occur at a 1.25 to 2 |                                                                                 | ar such that bank overflow storm events are more frequent that                                                           |          | Harvey and S<br>Travant         |
| Frequency<br>Ratio (for 2-         | year frequency.                                                          | every 1.25 years or less frequent                                               | from storm events are every half year or less frequent than                                                              |          | 116Valit                        |
| year peak                          | 0.75-1.25                                                                | than every 2,5 years, <0.75 or >1.25                                            | more frequent than every 10 years.<br>every year or less <0.24 or >2                                                     |          |                                 |
| flow)                              |                                                                          |                                                                                 | frequent than every 5                                                                                                    |          |                                 |
|                                    |                                                                          |                                                                                 | years.<br>< 0.5 or >1.5                                                                                                  |          |                                 |
| Grade                              | 10 9 8                                                                   | 7 6 5                                                                           | 4 3 2 1 0                                                                                                                | 0        |                                 |
|                                    |                                                                          | CONDITION CATEGORY                                                              | GRADE or SCORE                                                                                                           | -        | Newton, 199                     |
|                                    | Optimal                                                                  | Suboptimal                                                                      | Marginal Poor                                                                                                            |          | USDA/ NRCS                      |
| ***                                | Banks stable; evidence of erosio<br>bank failure absent or minimal; (    |                                                                                 |                                                                                                                          | t        | SVAP page                       |
| 2c.Channel                         | of bank affected), perennial                                             | 5-30% of bank in reach has areas                                                | of waterline sparse (mainly banks; recently exposed tree roots                                                           |          | 10: Barbour,<br>al., 1999 EP.   |
| Bank Stability<br>(score each      | vegetation to waterline; no raw<br>undercut banks (some erosion          |                                                                                 | scoured or stripped by common; tree falls and/or severely<br>to lateral erosion), bank undercut trees common; many erode |          | RBA page 5-                     |
| bank, left or                      | outside of meander bends O.K.)                                           | no waterline in most places; recently                                           | held by hard points areas; "raw" areas frequent along                                                                    |          | 26; USACE,<br>Norfolk           |
| right facing                       | recently exposed roots; no rece<br>tree fails;                           | nt exposed tree roots rare but preser                                           | It. (Irees, rock outcrops) straight sections and bends; obviou<br>and eroded back bank sloughing; 60-100% of bank ha     | si<br>Is | District, 2004                  |
| downstream)                        |                                                                          |                                                                                 | elsewhere; 30-60% of erosional scars.                                                                                    | 1        |                                 |
|                                    |                                                                          |                                                                                 | bank in reach has areas<br>of erosion and bank                                                                           |          |                                 |
|                                    |                                                                          |                                                                                 | undercutting; recently                                                                                                   |          |                                 |
|                                    |                                                                          |                                                                                 | exposed tree roots and fine root hairs common:                                                                           |          |                                 |
| Grade (Left)<br>Grade (Righl)      | 10 9 8<br>10 9 8                                                         | 7 <u>6</u> 5<br>7 6 5                                                           | 4         3         2         1         0           4         3         2         1         0                            |          |                                 |
| Cidde (rugiti)                     |                                                                          |                                                                                 | Avg.Scor                                                                                                                 |          |                                 |
| CHANNEL RO                         | UGHNESS FACTORS                                                          | ······································                                          |                                                                                                                          | -        |                                 |
|                                    |                                                                          | 60.10 m                                                                         |                                                                                                                          | ]        |                                 |
|                                    | Optimal                                                                  | CONDITION CATEGORY<br>Suboptimal                                                | Dear                                                                                                                     | -        | Barbour, 199<br>EPA RBA         |
| 3a.Channel                         | The bends in the stream increase                                         | he The bends in the stream increase th                                          | e The bends in the stream Channel straight; waterway has bee                                                             | in in    | Chapter 5 pa                    |
| Sinuosity<br>(bends in low         | stream length 2.5 to 4 limes lon                                         | er stream length 1.5 to 2.5 times long                                          | ef increase the stream channelized for a long distance.                                                                  |          | 5-25; KDWP                      |
| gradient                           | Ihan if it was straight. Channe<br>length/valley length at least >1      |                                                                                 | length 1 to 1.5 times Channel length/valley length_≤1.0 Channel length/valley length_≤1.0                                | 1        | 1996                            |
| stream)                            |                                                                          |                                                                                 | straight line. Channel<br>length/valley length 1.0                                                                       |          |                                 |
|                                    |                                                                          |                                                                                 | to 1.2.                                                                                                                  |          |                                 |
| Grade                              | 10 9 8                                                                   | 7 6 5                                                                           | 4 3 2 1 0                                                                                                                | c        | đ                               |
|                                    |                                                                          | CONDITION CATEGORY                                                              | GRADE or SCORE                                                                                                           | 4        | KDWP, 1990                      |
|                                    | Optimal                                                                  | Suboptimal                                                                      | Marginal Poor                                                                                                            | 1        | Kansas                          |
| 3b. Boltom                         | Little or no channel enlargeme<br>resulting from sediment                | t Some gravel bars of coarse stone<br>and well-washed debris present, lift      |                                                                                                                          |          | Subjective<br>Evaluation o      |
| Substrate                          | accumulation; channel is stab                                            |                                                                                 | moderately unstable sand, silt, clay, or bedrock; unstable                                                               |          | Aquatic                         |
| Composition                        |                                                                          |                                                                                 |                                                                                                                          |          | Habitats                        |
|                                    |                                                                          |                                                                                 |                                                                                                                          |          |                                 |
|                                    |                                                                          |                                                                                 |                                                                                                                          |          |                                 |
| Grade                              | 10 9 8                                                                   | 7 6 5                                                                           | 4 3 2 1 0                                                                                                                |          |                                 |

|                                      |                                                        |                                                                                       |                                            |                                                          | CON            | NUTION                        | ATECOS      | ~~ ?     | SRADE or     | ecope                                    |                |                        |           |                                             |      | KDWP, 1996                          |
|--------------------------------------|--------------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------|----------------------------------------------------------|----------------|-------------------------------|-------------|----------|--------------|------------------------------------------|----------------|------------------------|-----------|---------------------------------------------|------|-------------------------------------|
|                                      |                                                        | Optima                                                                                | <u>.</u>                                   |                                                          | 001            | Suboptim                      |             |          |              | rainal                                   | 1              |                        | Poor      |                                             |      | Newton et al.                       |
| 3c. Instream<br>Botlom<br>Topography | Diverse bo                                             |                                                                                       |                                            | w including                                              | Channait       |                               |             | tha      |              | tiom include                             | Chaone         |                        |           | es <3 of the                                |      | 1998                                |
| 3c. Instream<br>Bollom<br>Topography | >7 of the<br>boulders/<br>debris<br>overhar<br>vegetat | e following<br>/gravel, log<br>, backwate<br>nging vege<br>led shallow<br>t banks, or | : dee<br>s/lar<br>rs/ox<br>latior<br>s, ro | p pools,<br>ge woody<br>xbows,<br>n, riffles,<br>otwads, |                | ted in Oplin                  |             |          | < 5 of the   | items listed i<br>t Category             |                |                        |           | I Category                                  |      | USDA/NRC<br>SVAP page               |
| Grade                                |                                                        | pools                                                                                 |                                            |                                                          |                |                               |             |          | ļ            |                                          | <u> </u>       |                        |           |                                             |      |                                     |
| Grade                                | 10                                                     | 9                                                                                     |                                            | 8                                                        | 7              | 6                             | 5           |          | 4            | 3                                        | 2              |                        | 1         | 0                                           | 1    |                                     |
| Giade                                |                                                        |                                                                                       |                                            |                                                          | CON            | IDITION C                     | ATEGO       | RY C     | SRADE or     | SCORE                                    |                |                        |           |                                             |      |                                     |
| or                                   |                                                        | Optima                                                                                |                                            |                                                          |                | Suboptim                      | al          |          | Ma           | rginal                                   |                | ł                      | Poor      |                                             |      |                                     |
| Or<br>3c. Manning's<br>n             |                                                        | 0.05 to 0.4                                                                           | 099                                        |                                                          |                | 0.035 to 0.                   | .05         |          |              | 03 or >0.10 t<br>).15                    | obstructi      | on to flo<br>nelizatio | w or 0.0  | excessive<br>I1 to 0.02 due<br>lean, smooth |      | -                                   |
| Grade                                | 10                                                     | 9                                                                                     | Τ                                          | 8                                                        | 7              | 6                             | 5           |          | 4            | 3                                        | 2              |                        | 1         | 0                                           |      |                                     |
|                                      |                                                        |                                                                                       |                                            |                                                          |                |                               |             |          |              |                                          |                |                        |           |                                             |      |                                     |
| 1                                    |                                                        | Optima                                                                                |                                            |                                                          | CON            |                               |             | <u> </u> | SRADE or     |                                          |                |                        |           |                                             |      | USACE,                              |
| 3d. Channel                          | Incision r                                             | atio_>1.0 <1                                                                          |                                            | nd Where                                                 | Incision ra    | Suboptim<br>atio >1.2 <1.     |             | ere      |              | rginal<br>tio >1.4 < 2.                  | l Incision r   |                        | and W     | here channel                                |      | Norfolk<br>District, 200            |
| Incision                             |                                                        | slope >2%;                                                                            |                                            |                                                          |                | lope >2%,                     |             |          |              | ere channel                              |                |                        |           | ent ratio_4.4;                              |      | SAAM For                            |
| (TLB/BFD=BH                          |                                                        | 4; Where c                                                                            |                                            |                                                          |                | 4: Where cl                   |             |          |              | e > 2%,                                  |                |                        | nnel sio  |                                             |      | #1 and VT                           |
| R; 1/BHR*Adj                         | <u>≤</u> 2%; E                                         | ntrenchme                                                                             | int ra                                     | ntio >2.0                                                | <u>≤</u> 2%, E | ntrenchmer                    | nt ratio >2 | 0        |              | ent ratio >1.4<br>nannel slope           |                | Irenchr                | nent rati | o_ <del>2</del> .0                          |      | Stream                              |
| Factor =CI)                          |                                                        |                                                                                       |                                            |                                                          |                |                               |             |          | _<2%. Er     | itrenchment<br>o >2.0                    |                |                        |           | :                                           |      | Geomorphi<br>Assessmer<br>Phase 2   |
| TLB =                                | <u>_</u>                                               | 10                                                                                    |                                            |                                                          | BHR =          | 1                             | ****        |          |              |                                          |                |                        |           |                                             |      |                                     |
| BFD =                                |                                                        | 10                                                                                    |                                            |                                                          |                |                               |             |          | 1            |                                          | 1              |                        |           |                                             |      |                                     |
| Grade                                | 10                                                     | 9                                                                                     |                                            | 8                                                        | 7              | 6                             | 5           |          | 4            | 3                                        | 2              |                        | 1         | 0                                           | 0    | Į                                   |
| DYNAMIC SUR                          | FACE WA                                                | TER STC                                                                               | RAC                                        | GE                                                       |                |                               |             |          |              |                                          |                |                        |           |                                             |      |                                     |
|                                      |                                                        |                                                                                       |                                            |                                                          |                | IDITION                       | ATECOL      | VC       | RADE or      | 100pc                                    |                |                        |           | ·····                                       |      | Maurian at                          |
|                                      |                                                        | Optima                                                                                | <br>al                                     |                                                          | COP            | Suboptim                      |             | ir e     |              | rginal                                   | 1              |                        | Poor      |                                             |      | Newlon, et<br>1998 USD              |
| 4a.Pools                             | Deep and                                               |                                                                                       | -                                          | abundant;                                                | Pools pr       | esent, but n                  |             | nt;      |              | resent, but                              | Pools al       |                        |           | tire boltom is                              |      | NRCS SV                             |
| (abundant,                           |                                                        |                                                                                       |                                            | ool bottom                                               |                | 30% of the p                  |             |          |              | rom 5-10% c                              | f disce        | ernible.               | No wat    | er = zero.                                  |      | page 14;                            |
| present or                           |                                                        | due to dep<br>least 5 fee                                                             |                                            | or pools are                                             |                | due to depth<br>at least 3 fe |             | oois     |              | I bottom is<br>ie to depth, c            |                |                        |           |                                             |      | Barbour, et                         |
| absent)                              |                                                        | 16451 0 166                                                                           | a uec                                      | եր.                                                      | 210            | at least 5 le                 | ei ueep,    |          | the pools a  | re less than                             | 3              |                        |           |                                             |      | 1999                                |
|                                      |                                                        |                                                                                       |                                            |                                                          |                |                               |             |          |              | deep.                                    |                |                        |           |                                             |      |                                     |
| Grade                                | 10                                                     | 9                                                                                     | T                                          | 8                                                        | 7              | 6                             | 5           |          | 4            | 3                                        | 2              | 1                      | 1         | 0                                           | 1    |                                     |
| 4b, Channel                          |                                                        |                                                                                       |                                            |                                                          | 001            | DITION                        | ATECO       |          | GRADE or     | RCORE                                    |                | ·                      |           |                                             |      |                                     |
| Flow Status                          |                                                        | Oplima                                                                                | 1                                          |                                                          | 001            | Subontim                      |             | <u></u>  |              | rginal                                   |                |                        | Poor      |                                             |      | Barbour, et                         |
| (degree to                           | Water rea                                              | aches base                                                                            |                                            | oth lower                                                | Water fil      | Is >75% of                    |             | ole      |              | 25-75% of th                             | el Verv little |                        |           | nel and mosli                               |      | 1999 EPA                            |
| which channel<br>is filled)          |                                                        | and minimation                                                                        |                                            |                                                          |                | el; or <25%<br>ostrate is ex  |             | ł        | for niffle s | channel, an<br>ubstrates are<br>exposed. | present a      | s standi               |           | s. No water =                               |      | page 5-19<br>9#5; TCEC<br>1999: VAN |
| Grade                                | 10                                                     | 9                                                                                     | Ι                                          | 8                                                        | 7              | 6                             | 5           |          | 4            | 3                                        | 2              |                        | 1         | 0                                           | 1 1  | 2005                                |
|                                      |                                                        |                                                                                       | *                                          |                                                          |                | <u>~</u>                      | almulatio-  | ofr      | Lunghan C.   | nosite lad-                              | I Total C      |                        | atal D    | sible Score                                 |      | 4                                   |
|                                      |                                                        |                                                                                       |                                            |                                                          |                | 0                             | nculation   | ur       | UNCLION US   | ipacity nide                             | x - 10(8) 5    | core/1                 |           |                                             | 0.07 | 4                                   |
| 1                                    |                                                        |                                                                                       |                                            |                                                          |                |                               |             |          |              |                                          |                |                        |           | FCI = #/100                                 | 1    | 1                                   |

•

.

 $\bigcirc$ 

 $\bigcirc$ 

 $\bigcirc$ 

.

| 1.                                | NOTES<br>SEDIMENT TR                | ANSPORT        | I/DEPOSITI                       | ON              |              |                             |                                 |               |                                        |             |                                |                                      | ] |
|-----------------------------------|-------------------------------------|----------------|----------------------------------|-----------------|--------------|-----------------------------|---------------------------------|---------------|----------------------------------------|-------------|--------------------------------|--------------------------------------|---|
|                                   | 1                                   |                |                                  |                 |              |                             |                                 |               | 00005                                  |             |                                |                                      | 4 |
|                                   |                                     | ļ              | Optimal                          |                 |              | Suboptim                    | ATEGORY (                       |               | SCORE                                  |             | Poor                           |                                      | - |
|                                   | 1a, Bank                            | Banks sta      |                                  | of erosion o    | Moderaleh    |                             | requent, smal                   |               | y unstable; 30-                        | Unstable;   |                                | d areas; "raw                        | 4 |
|                                   | Stability (score<br>each bank, left | bank failu     | ire absent or                    | minimal; little | areas of er  | osion most                  | ly healed over                  | 60% of bar    | nk in reach has                        | areas ír    | requently all                  | ong straight                         |   |
|                                   | or right facing                     | potential to   | or future prot<br>bank affecte   |                 | 5-30% of b   | erosion.                    | h has areas o                   |               | erosion; high<br>otential during       |             |                                | obvious bank<br>of bank has          |   |
|                                   | downstream)                         |                |                                  |                 |              | 01001011,                   |                                 |               | oods.                                  |             | erosional sc                   |                                      |   |
|                                   |                                     |                |                                  |                 |              |                             |                                 |               |                                        |             |                                |                                      |   |
|                                   | <u> </u>                            | L              |                                  |                 |              |                             |                                 | ļ             |                                        |             |                                |                                      | ļ |
|                                   | Grade (Left)<br>Grade (Right)       | 10             | 9                                | 8               | 7            | 6                           | 5                               | 4             | 3                                      | 2           | 1 1                            | 0                                    |   |
|                                   |                                     |                |                                  | 1 <u>v</u>      | ·            | <u> </u>                    |                                 | L             | <u> </u>                               | L           | -J                             | Avg.Score                            | - |
|                                   |                                     |                |                                  |                 |              |                             |                                 |               |                                        |             |                                |                                      | - |
|                                   |                                     |                | Optimal                          |                 |              | Suboptim                    | ATEGORY                         |               | SCORE<br>arginal                       |             | Poor                           |                                      | - |
| <u>e</u>                          | 1b. Channel<br>Bottom Bank          | Bottom 1/3     | 3 of bank is ge                  | enerally highly | Bollom       |                             | is generally                    | Bottom 1      | /3 of bank is                          | Botiom 1/3  |                                | enerally highly                      | 7 |
| liab                              | Stability                           | resistant p    | slant/soil mate                  | rix or materia  | resistant pl | lant/soil ma                | trix or materia                 |               | highly erodible                        |             |                                | anUsoil matrix                       |   |
| Age                               |                                     |                |                                  |                 |              |                             |                                 |               | lant/soil matrix<br>promised.          | SEV         | erely compr                    | omised.                              |   |
| One Variable                      |                                     |                |                                  |                 |              |                             |                                 | 00111         |                                        |             |                                |                                      |   |
| Only 0                            | Grade (Left)                        | 10             | 9                                | 8               | 7            | 6                           | 5                               | 4             | 3                                      | 2           | 1                              | 0                                    |   |
| Ő                                 | Grade (Right)                       | 10             | 9                                | 8               | 7            | 6                           | 5                               | 4             | 3                                      | 2           | 1                              | 0<br>Avg.Score                       |   |
| e for                             |                                     |                |                                  |                 |              |                             |                                 |               |                                        |             |                                | /                                    |   |
| Score                             | or                                  |                | Outinal                          |                 | 00           |                             | ATEGORY                         |               |                                        | 1           |                                |                                      | 4 |
| Enter                             | 1c. Channel<br>Sediments or         | >50% a         | Optimal<br>ravel or large        | r substrate:    | 30-50% g     | Suboptim<br>ravel or lar    | ai<br>ger subsirate;            |               | arginal<br>oravel or larger            | Substrate   | Poor<br>is uniform s           | sand, sill, clay                     |   |
| 5                                 | Substrate                           | gravel, o      | obble boulde                     | rs; dominant    | dominant     | t substrate                 | type is mix of                  | substrat      | le; dominant                           | or          | bedrock; ur                    |                                      | 1 |
|                                   | Composition                         | substrate      | te type is grav<br>stable        | vel or larger.  |              | th some fine<br>oderately s | er sediments;<br>table          |               | /pe is finer than<br>It may still be a |             |                                |                                      |   |
|                                   | Grade                               | 10             | 9                                | 8               | 7            | 6                           | 5                               | 4             | 3                                      | 2           | 1                              | 0                                    |   |
|                                   | WATER APPE                          | 1              |                                  | 1               | · · ·        | 1                           |                                 | 1             | 1 <u>~</u>                             | <u> </u>    |                                |                                      | + |
|                                   |                                     |                |                                  |                 |              |                             |                                 |               |                                        |             |                                | ,,                                   | ] |
|                                   |                                     |                | Optimal                          |                 |              | Suboptim                    | ATEGORY                         |               | SCORE<br>arginal                       | I           | Poor                           |                                      | - |
|                                   |                                     | Very clea      | ar, or clear bu                  | t tea-colored   | Occasiona    |                             | especially after                |               | ible cloudiness                        |             | i or muddy ap                  | pearance most                        |   |
|                                   |                                     |                | sible at depth<br>( colored); no |                 |              |                             | ears rapidly;<br>h 1.5-3 ft; ma |               | e time; objects<br>lepth 0.5-1.5 ft;   |             |                                | to depth <0.5 ft;<br>be bright-green |   |
| 1                                 | Water Clarity                       |                | colored), no                     |                 |              |                             | color; no oil                   |               | ins may appea                          | other obvio | ous water pol                  | lutants; floating                    |   |
|                                   | *******                             | subme          | erged objects                    | or rocks,       | shee         | n on water                  | surface.                        |               | r; battom racks<br>rged objected       |             |                                | , sheen or heavy<br>No water = zero  |   |
|                                   |                                     |                |                                  |                 |              |                             |                                 |               | d with film.                           |             |                                |                                      |   |
|                                   |                                     |                |                                  |                 |              |                             |                                 |               |                                        |             |                                |                                      |   |
|                                   | Canda                               | L              |                                  | 8               | 7            |                             | E                               |               | 1 2                                    | 2           |                                | 0                                    |   |
|                                   | Grade                               | 10             | 9                                | 0               | 7            | 6                           | 5                               | 4             | 3                                      | 2           | 1 1                            |                                      |   |
|                                   | PRESENCE O                          | F AQUATI       | C VEGETA                         | TION: Pres      | ence and Pe  | ercent Cov                  | erage                           |               |                                        |             |                                |                                      |   |
|                                   |                                     |                |                                  |                 |              |                             | MTCOODY                         | 20405         | 0000                                   |             |                                |                                      | 4 |
| ]                                 |                                     |                | Optimal                          |                 | T COI        | Suboptim                    | ATEGORY                         |               | arginal                                | ]           | Poor                           |                                      | - |
| ble                               | 3a. Nutrient                        | 1              | water along e                    |                 |              | r or slightly               | greenish wate                   | Greenish w    | ater along entire                      |             | , gray, or bro                 | wn water along                       | 1 |
| aria                              | Enrichment                          |                | aquatic plan<br>s low quantal    |                 |              | ire reach; n<br>on stream   | noderale alga                   |               | bundance of lush<br>phyles; abundant   |             | reach; dense<br>les clog strea | e stands of<br>m; severe algal       | 1 |
| 0                                 |                                     |                | of macrophyt                     |                 |              | onstream                    | subsilates.                     | algal growth, | especially during                      | blooms cre  | ate thick alga                 | it mais in stream                    |   |
| 6                                 | (                                   |                | growth press                     | ent.            | 1            |                             |                                 | warm          | er months.                             |             | gae present d<br>traie. No wat | lue to unstable<br>ter = zero.       |   |
|                                   |                                     |                |                                  |                 |              |                             |                                 |               |                                        |             |                                |                                      |   |
| yind                              | Grade                               | 10             | 9                                | 8               | 7            | 6                           | 5                               | 4             | 3                                      | 2           | 1                              | 0                                    | 1 |
| or Only                           | 1                                   | <b> </b>       |                                  |                 |              | NDITION                     | ATEGORY                         |               | POODE                                  |             |                                |                                      | - |
| ire for Only                      |                                     |                | Optimal                          |                 |              | Suboptin                    |                                 |               | arginal                                | Γ           | Poor                           |                                      | 1 |
| Scare for Only                    | or                                  | Winen n        | resent, aqual                    | ic vegetation   |              | ominant in                  | pools, larger                   | Algal mats    | present, some                          |             | ats cover b                    | ottom, larger                        | ] |
| Iter Score for Only               | Or<br>3b. Aquatic                   | Turnenthi      |                                  | d patches of    | p p          | lants along                 | edge                            | larger plan   | ts, few mosses                         |             |                                | channel or NC<br>to unstable         | 1 |
| Enter Score for Only One Variable |                                     | consists       |                                  |                 |              |                             |                                 | 1             |                                        |             |                                |                                      | 1 |
| Enter Score for Only              | 3b. Aquatic                         | consists       | algae.                           |                 |              |                             |                                 |               |                                        |             | ale. No wa                     | aler = zero.                         |   |
| Enter Scare for Only              | 3b. Aquatic                         | consists<br>10 |                                  | 8               | 7            | 6                           | 5                               | 4             | 3                                      | 2           | 1                              | aler = zero.                         |   |

|                                                                   |                                               |                                                        |                                  | COM                     | VDITION CA                                      |                             |                                                   |                                                        |               | ·                                 |                                |
|-------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------|----------------------------------|-------------------------|-------------------------------------------------|-----------------------------|---------------------------------------------------|--------------------------------------------------------|---------------|-----------------------------------|--------------------------------|
|                                                                   | Mainly man                                    | Optimal                                                |                                  | 1                       | Suboptima                                       |                             |                                                   | rginal                                                 |               | Poor                              | - black in color               |
|                                                                   | Mainly consi:<br>wit                          | hout sedim                                             |                                  |                         | and wood so<br>Jebris wilhou                    |                             | debris; co<br>organic                             | es or woody<br>arse and fine<br>malter with<br>liment, | and foul      | odor (anae                        | erobic) or no                  |
| Grade                                                             | 10                                            | 9                                                      | 8                                | 7                       | 6                                               | 5                           | 4                                                 | 3                                                      | 2             | 1                                 | 0                              |
| 5 LAND USE PA                                                     | TTERN: Ber                                    | vond Imme                                              | diate Ripari                     | an Zone                 |                                                 |                             |                                                   |                                                        |               |                                   |                                |
|                                                                   |                                               |                                                        |                                  |                         |                                                 |                             |                                                   | ······································                 |               |                                   |                                |
|                                                                   |                                               |                                                        |                                  | CON                     | VDITION CA                                      |                             |                                                   |                                                        |               |                                   |                                |
|                                                                   | 1 logligtush                                  | Optimal<br>ed, consisti                                |                                  | Deterrer                | Suboptima<br>ent pasture r                      |                             |                                                   | irginal                                                |               | Poor                              |                                |
|                                                                   |                                               |                                                        | ng of forest,<br>and/or natura   |                         | s and swamp                                     |                             |                                                   | w crops and<br>some wooded                             | i ii          | fainly row c                      | aops                           |
|                                                                   |                                               | wetlands.                                              |                                  |                         | crops                                           |                             |                                                   | be present bui<br>led patches                          |               |                                   |                                |
| Grade (Left)                                                      | 10                                            | 9                                                      | 8                                | 7                       | 6                                               | 5                           | 4                                                 | 3                                                      | 2             | 1                                 | 0                              |
| Grade (Right)                                                     | 10                                            | 9                                                      | 8                                | 7                       | 6                                               | 5                           | 4                                                 | 3                                                      | 2             | 1                                 | 0                              |
| 6 RIPARIAN ZON                                                    |                                               |                                                        | 1811 11757                       |                         |                                                 | ······                      |                                                   |                                                        |               |                                   | Avg.Score                      |
| O NIFARIAN 201                                                    |                                               |                                                        | INUITT.                          | ·····                   |                                                 |                             |                                                   |                                                        |               | - <u>\</u>                        |                                |
|                                                                   |                                               |                                                        |                                  | 100                     | VDITION CA                                      | TEGORY                      | GRADE or S                                        | SCORE                                                  |               |                                   |                                |
| 6a. Riparian                                                      |                                               | Optimal                                                |                                  | ]                       | Suboptima                                       |                             |                                                   | irginal                                                |               | Poor                              |                                |
| Zone Width                                                        |                                               |                                                        | 8 meters (1-2<br>shrubs, or tall |                         | nian zone 12-1<br>nnel width w/tre              |                             |                                                   | arian zone 6-12<br>1/3-1/2 active                      | Width of ripa | rian zone < 6                     | meters (natural active channel |
| (from stream<br>edge to field)                                    | grasses), h                                   | ns with trees,<br>numan activiti<br>mpacted zon        | es have not                      | grasses), hui           | man activities I<br>impacted zone               | ave minimally               | channel wi                                        | human activities                                       | width), littl |                                   | getation due to                |
| Grade (left)                                                      | 10                                            | 9                                                      | 8                                | 7                       | 6                                               | 5                           | 4                                                 | 3                                                      | 2             | 1                                 | 1 0                            |
| Grade (Right)                                                     | 10                                            | 9                                                      | 8                                | 7                       | 6                                               | 5                           | 4                                                 | 3                                                      | 2             | 1                                 | 0                              |
|                                                                   |                                               |                                                        |                                  |                         |                                                 |                             |                                                   |                                                        |               |                                   | Avg.Score                      |
|                                                                   | ļ                                             | Optimal                                                |                                  |                         | VDITION CA                                      |                             |                                                   |                                                        | r             |                                   |                                |
|                                                                   |                                               |                                                        | nture trees or                   | 75-90% str              | Suboptima<br>eambank vege                       |                             |                                                   | rginal<br>streambank                                   | Less than     | Poor<br>60% streamb               | ank vegelation                 |
| 6b. Riparian                                                      | >90% plant                                    |                                                        |                                  |                         |                                                 | al and mature               | vegetation o                                      | f mixed grasses                                        | coverage of   | consisting mo                     | stly of pasture                |
| 6b. Riparian<br>Zone                                              | >90% plant<br>shrubs, prain                   | ie grasses, or                                         |                                  |                         |                                                 |                             |                                                   | wound lean or                                          | grasses, fe   | ew trees & sh                     | rubs; low plant                |
| Zone<br>Vegetation                                                | shrubs, prain<br>riparian zon                 | ie grasses, or<br>ne intact or dis                     | ruption from                     | trees behi              | nd; disruption                                  | evident with                | and sparse                                        |                                                        | dancity har   | at danniv ees                     |                                |
| Zone<br>Vegetation<br>Protection/                                 | shrubs, prain<br>riparian zon                 | ie grasses, or                                         | ruption from                     | trees behi              |                                                 | evident with                | shrub spi<br>frequent wi                          | ecies; breaks<br>th some gullies                       |               | nk deeply sca<br>Ill along its le |                                |
| Zone<br>Vegetation                                                | shrubs, prain<br>riparian zon                 | ie grasses, or<br>ne intact or dis                     | ruption from                     | trees behi              | nd: disruption                                  | evident with                | shrub spi<br>frequent wi                          | ecies; breaks                                          |               |                                   |                                |
| Zone<br>Vegetation<br>Protection/                                 | shrubs, prain<br>riparian zon                 | ie grasses, or<br>ne intact or dis                     | ruption from                     | trees behi              | nd: disruption                                  | evident with                | shrub spi<br>frequent wi                          | ecies; breaks<br>th some gullies                       |               |                                   |                                |
| Zone<br>Vegetation<br>Protection/                                 | shrubs, prain<br>riparian zon<br>grazin<br>10 | ie grasses, or<br>ne intact or dis<br>ng/mowing m<br>9 | ruption from                     | trees behi              | nd: disruption                                  | evident with                | shrub spi<br>frequent wi                          | ecies; breaks<br>th some gullies                       |               |                                   |                                |
| Zone<br>Vegetation<br>Protection/<br>Completeness                 | shrubs, prain<br>riparian zon<br>grazin       | ie grasses, or<br>ne intact or dia<br>ng/mowing m      | sruption from<br>inimal.         | trees behi<br>breaks oc | ind; disruption<br>courring at inter<br>meters, | evident with<br>vals of >50 | shrub spi<br>frequent wi<br>and scars e           | ecies; breaks<br>th some gullies<br>very 50 meters,    | 2             | ill along its le                  | ngth.                          |
| Zone<br>Vegetation<br>Protection/<br>Completeness<br>Grade (Left) | shrubs, prain<br>riparian zon<br>grazin<br>10 | ie grasses, or<br>ne intact or dis<br>ng/mowing m<br>9 | sruption from<br>inimal.         | trees behi<br>breaks oc | ind; disruption<br>courring at inter<br>meters, | evident with<br>vals of >50 | shrub spi<br>frequent wi<br>and scars e           | ecies; breaks<br>th some gullies<br>very 50 meters,    | 2             | ill along its let                 | ngth.                          |
| Zone<br>Vegetation<br>Protection/<br>Completeness<br>Grade (Left) | shrubs, prain<br>riparian zon<br>grazin<br>10 | ie grasses, or<br>ne intact or dis<br>ng/mowing m<br>9 | sruption from<br>inimal.         | trees behi<br>breaks oc | ind: disruption<br>courring at inter<br>meters, | evident with<br>vals of >50 | shrub spi<br>frequent wi<br>and scars e<br>4<br>4 | cites; breaks<br>th some gullies<br>very 50 meters.    | 2             | Il along its ter                  | ngth.                          |

|   |                                     |                                                                                                                                                                                                                                    |                                                                                           | 05\05\2006 Highway                                                                                                                                                                                                                                                                                                                                                                                                                                           | 34 Bridge                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                    | SCORE So                                                                                                                                                                                                     |
|---|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | 1 FLOW REGI                         | ME                                                                                                                                                                                                                                 |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                    | ]                                                                                                                                                                                                            |
|   | TYPE                                | Perennial                                                                                                                                                                                                                          |                                                                                           | Intermittent w/ Perennial Pool                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ephemeral                                                                                                                                                                                                                                                                                                                                                                                          | KD                                                                                                                                                                                                           |
|   | Grade                               | 10 9                                                                                                                                                                                                                               | 8                                                                                         | 7 6 5                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4 3                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2 1 0                                                                                                                                                                                                                                                                                                                                                                                              | 4 20                                                                                                                                                                                                         |
| 2 | 2 EPIFAUNAL                         | SUBSTRATE/AVAILABLE C                                                                                                                                                                                                              | OVER                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                            |
|   |                                     | Optimal                                                                                                                                                                                                                            |                                                                                           | Suboptimal                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Marginal                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Poor                                                                                                                                                                                                                                                                                                                                                                                               | ]                                                                                                                                                                                                            |
|   |                                     | Wilhin stream bed, greater<br>coverage by stable habitat                                                                                                                                                                           |                                                                                           | Within stream bed, 30-50% coverage<br>by stable habitat features favorable                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Less than 10% habitat features<br>present; lack of habitat is obvious;                                                                                                                                                                                                                                                                                                                             | US<br>No                                                                                                                                                                                                     |
|   |                                     | favorable for stream faunal of                                                                                                                                                                                                     | colonization                                                                              | for stream faunal colonization and/                                                                                                                                                                                                                                                                                                                                                                                                                          | or features favorable for stream                                                                                                                                                                                                                                                                                                                                                                                                                              | substrate unstable or lacking;                                                                                                                                                                                                                                                                                                                                                                     | 20                                                                                                                                                                                                           |
|   |                                     | and/or fish/amphibian cover,<br>features non transient, Features                                                                                                                                                                   |                                                                                           | fish/amphibian cover. Many habita<br>features not transient. (See Excelle                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                               | concrete lined channels. Habitat<br>features and pools buried or lacking,                                                                                                                                                                                                                                                                                                                          | SA                                                                                                                                                                                                           |
|   |                                     | include snags, submerged lo                                                                                                                                                                                                        | gs, undercul                                                                              | Calegory for habital feature                                                                                                                                                                                                                                                                                                                                                                                                                                 | availability may be less than                                                                                                                                                                                                                                                                                                                                                                                                                                 | channel bollom may be flat.                                                                                                                                                                                                                                                                                                                                                                        | 10                                                                                                                                                                                                           |
|   |                                     | banks, roots, cobble, rocks, p<br>packs, pools and glides, or                                                                                                                                                                      |                                                                                           | components.)                                                                                                                                                                                                                                                                                                                                                                                                                                                 | desirable, substrate may be<br>frequently disturbed. (See                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                  | (pa<br>Ba                                                                                                                                                                                                    |
|   |                                     | habitat at a stage to allow c                                                                                                                                                                                                      |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Excellent Category for habitat                                                                                                                                                                                                                                                                                                                                                                                                                                | ļ                                                                                                                                                                                                                                                                                                                                                                                                  | al.                                                                                                                                                                                                          |
|   |                                     |                                                                                                                                                                                                                                    |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                              | feature components.)                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                    | EP                                                                                                                                                                                                           |
|   |                                     |                                                                                                                                                                                                                                    |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                    | Pa<br>al.,                                                                                                                                                                                                   |
|   |                                     |                                                                                                                                                                                                                                    |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                    | AU                                                                                                                                                                                                           |
|   | Grade                               | 10 9                                                                                                                                                                                                                               | 8                                                                                         | 7 6 5                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4 3                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2 1 0                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                            |
| 3 | 3 STREAM BC                         | TTOM SUBSTRATE: Pool S                                                                                                                                                                                                             | Substrate Cr                                                                              | naraclerization                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                            |
|   |                                     | Optimat                                                                                                                                                                                                                            |                                                                                           | Suboptimal                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Marginal                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Poor                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                              |
|   | 1                                   | Mixture of substrate materials<br>and firm sand prevalent; roo                                                                                                                                                                     |                                                                                           | Mixture of soft sand, mud, or clay,<br>mud may be dominant; some root                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Hard pan clay or bedrock; no rool<br>mat or submerged vegetation                                                                                                                                                                                                                                                                                                                                   | Ba<br>al.                                                                                                                                                                                                    |
|   |                                     | submerged vegetation of                                                                                                                                                                                                            |                                                                                           | mals and submerged vegatation                                                                                                                                                                                                                                                                                                                                                                                                                                | submerged vegetation.                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                    | RE                                                                                                                                                                                                           |
|   |                                     |                                                                                                                                                                                                                                    |                                                                                           | present.                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                    | pa                                                                                                                                                                                                           |
|   |                                     |                                                                                                                                                                                                                                    |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                    | Pa<br>al.                                                                                                                                                                                                    |
|   | Grade                               | 10 9                                                                                                                                                                                                                               | 8                                                                                         | 7 6 5                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4 3                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2 1 0                                                                                                                                                                                                                                                                                                                                                                                              | 1 AL                                                                                                                                                                                                         |
|   |                                     | ······································                                                                                                                                                                                             |                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11                                                                                                                                                                                                                                                                                                                                                                                                 | jj                                                                                                                                                                                                           |
| 4 | 4 POOL VARIA                        | ABILITY<br>Optimal                                                                                                                                                                                                                 |                                                                                           | Puhantimal                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Maminal                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Door                                                                                                                                                                                                                                                                                                                                                                                               | 4                                                                                                                                                                                                            |
|   |                                     | Even mix of large-shallow, I                                                                                                                                                                                                       | arge-deep.                                                                                | Suboptimal<br>Majority of pools large-deep; very                                                                                                                                                                                                                                                                                                                                                                                                             | Marginal<br>Shallow pools much more                                                                                                                                                                                                                                                                                                                                                                                                                           | Poor<br>Majority of pools small-shallow or                                                                                                                                                                                                                                                                                                                                                         | Ba                                                                                                                                                                                                           |
|   |                                     | small-shallow, small-deep po                                                                                                                                                                                                       | ools present                                                                              | few shallow.                                                                                                                                                                                                                                                                                                                                                                                                                                                 | prevalent than deep pools                                                                                                                                                                                                                                                                                                                                                                                                                                     | pools absent                                                                                                                                                                                                                                                                                                                                                                                       | al.                                                                                                                                                                                                          |
|   |                                     |                                                                                                                                                                                                                                    |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                               | [                                                                                                                                                                                                                                                                                                                                                                                                  | RE                                                                                                                                                                                                           |
|   |                                     |                                                                                                                                                                                                                                    |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                    | pa<br>Pa                                                                                                                                                                                                     |
|   |                                     |                                                                                                                                                                                                                                    |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                    | al.                                                                                                                                                                                                          |
|   | Grade                               | 10 9                                                                                                                                                                                                                               | 8                                                                                         | 7 6 5                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4 3                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2 1 0                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                            |
| 5 | 5 SEDIMENT (                        | DEPOSITION/SCOURING<br>Optimal                                                                                                                                                                                                     | ·····                                                                                     | Cubapting                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Marrisof                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Dees                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                            |
|   |                                     | <5% of channel bottom affecte                                                                                                                                                                                                      | d by scour or                                                                             | Suboplimal<br>5-30% affected by scour or deposition                                                                                                                                                                                                                                                                                                                                                                                                          | Marginal<br>30-50% affected by scour or                                                                                                                                                                                                                                                                                                                                                                                                                       | Poor<br>More than 50% of the boltom in a state                                                                                                                                                                                                                                                                                                                                                     | Ba                                                                                                                                                                                                           |
|   |                                     | deposition,                                                                                                                                                                                                                        |                                                                                           | Scour at constrictions and wohre grade<br>steepen. Some deposition in pools                                                                                                                                                                                                                                                                                                                                                                                  | deposition. Deposits and scour at<br>obstructions, constrictions and                                                                                                                                                                                                                                                                                                                                                                                          | of flux or change nearly yearlong. Pools<br>minimal or obsent due to heavy                                                                                                                                                                                                                                                                                                                         | s   al.                                                                                                                                                                                                      |
|   |                                     |                                                                                                                                                                                                                                    |                                                                                           | shepen oone accoston in poola                                                                                                                                                                                                                                                                                                                                                                                                                                | bends. Some filling of pools.                                                                                                                                                                                                                                                                                                                                                                                                                                 | deposition or excessive scounting                                                                                                                                                                                                                                                                                                                                                                  | RE                                                                                                                                                                                                           |
|   | 1                                   | 1                                                                                                                                                                                                                                  |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                    | 100                                                                                                                                                                                                          |
|   |                                     |                                                                                                                                                                                                                                    |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                              |
|   |                                     |                                                                                                                                                                                                                                    |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                    | Pa<br>al.                                                                                                                                                                                                    |
|   | Grade                               | 10 9                                                                                                                                                                                                                               | 8                                                                                         | 7 6 5                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4 3                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2 1 0                                                                                                                                                                                                                                                                                                                                                                                              | Pa                                                                                                                                                                                                           |
| 6 | Grade<br>6 CHANNEL F                | LOW STATUS                                                                                                                                                                                                                         | 8                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                    | Pa<br>al.                                                                                                                                                                                                    |
| 6 |                                     | LOW STATUS<br>Optimal                                                                                                                                                                                                              |                                                                                           | Suboptimal                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Marginal                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Poor                                                                                                                                                                                                                                                                                                                                                                                               | Pa<br>al.<br>1<br>7<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                  |
| 6 |                                     | LOW STATUS<br>Optimal<br>Water reaches the base of<br>banks; <5% of channel su                                                                                                                                                     | both lawer                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Marginal<br>Water fills 25-75% of the<br>available channel and/or iffle                                                                                                                                                                                                                                                                                                                                                                                       | Poor<br>Very little water in the channel and<br>mostly present in standing pools; or                                                                                                                                                                                                                                                                                                               | Pa<br>al.<br>                                                                                                                                                                                                |
| 6 |                                     | LOW STATUS<br>Optimal<br>Water reaches the base of                                                                                                                                                                                 | both lawer                                                                                | Suboplimal<br>Water fills >75% of the channel; o                                                                                                                                                                                                                                                                                                                                                                                                             | Marginal<br>r Water fills 25-75% of the                                                                                                                                                                                                                                                                                                                                                                                                                       | Poor<br>Very little water in the channel and                                                                                                                                                                                                                                                                                                                                                       | Pa<br>al.<br>1<br>70<br>19<br>WW<br>WW<br>Ba<br>al.<br>2                                                                                                                                                     |
| 6 |                                     | LOW STATUS<br>Optimal<br>Water reaches the base of<br>banks; <5% of channel su                                                                                                                                                     | both lawer                                                                                | Suboptimal<br>Water fills >75% of the channel; o<br><25% of channel substrate is                                                                                                                                                                                                                                                                                                                                                                             | Marginal<br>Water fills 25-75% of the<br>available channel and/or iffle                                                                                                                                                                                                                                                                                                                                                                                       | Poor<br>Very little water in the channel and<br>mostly present in standing pools; or                                                                                                                                                                                                                                                                                                               | Pa<br>al.<br>1<br>7<br>7<br>7<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9                                                                                                |
| 6 |                                     | LOW STATUS<br>Optimal<br>Water reaches the base of<br>banks; <5% of channel su                                                                                                                                                     | both lawer                                                                                | Suboptimal<br>Water fills >75% of the channel; o<br><25% of channel substrate is                                                                                                                                                                                                                                                                                                                                                                             | Marginal<br>Water fills 25-75% of the<br>available channel and/or iffle                                                                                                                                                                                                                                                                                                                                                                                       | Poor<br>Very little water in the channel and<br>mostly present in standing pools; or                                                                                                                                                                                                                                                                                                               | Pa<br>al.<br>1<br>70<br>19<br>WW<br>WW<br>Ba<br>al.<br>2                                                                                                                                                     |
|   | 6 CHANNEL F                         | LOW STATUS<br>Optimal<br>Water reaches the base of<br>banks; <5% of channel su<br>exposed<br>10 9                                                                                                                                  | both lawer                                                                                | Suboptimal<br>Water fills >75% of the channel; o<br><25% of channel substrate is                                                                                                                                                                                                                                                                                                                                                                             | Marginal<br>Water fills 25-75% of the<br>available channel and/or iffle                                                                                                                                                                                                                                                                                                                                                                                       | Poor<br>Very little water in the channel and<br>mostly present in standing pools; or                                                                                                                                                                                                                                                                                                               | Pa<br>al.<br>1<br>TC<br>19<br>WM<br>Ba<br>al.<br>19<br>WM<br>Ba<br>al.<br>20<br>19<br>NM<br>Ba<br>Ba<br>al.                                                                                                  |
|   | 6 CHANNEL F                         | LOW STATUS<br>Optimal<br>Water reaches the base of<br>banks; <5% of channel su<br>exposed<br>10 9<br>LTERATION                                                                                                                     | both lower<br>ibstrate is                                                                 | Suboptimal<br>Water fills >75% of the channel; o<br><25% of channel substrate is<br>exposed<br>7 6 5                                                                                                                                                                                                                                                                                                                                                         | Marginal<br>Water fils 25-75% of the<br>available channel and/or iffle<br>substrates are mostly exposed<br>4 3                                                                                                                                                                                                                                                                                                                                                | Poor<br>Very little water in the channel and<br>mostly present in standing pools; or<br>stream is dry<br>2 1 0                                                                                                                                                                                                                                                                                     | Pa<br>al.<br>1<br>TC<br>19<br>WM<br>Ba<br>al.<br>19<br>WM<br>Ba<br>al.<br>20<br>19<br>NM<br>Ba<br>Ba<br>al.                                                                                                  |
|   | 6 CHANNEL F                         | LOW STATUS<br>Optimal<br>Water reaches the base of<br>banks; <5% of channel su<br>exposed<br>10 9<br>LTERATION<br>Optimal                                                                                                          | both lower<br>ubstrate is                                                                 | Suboptimal<br>Water fills 75% of the channel; o<br><25% of channel substrate is<br>exposed<br>7 6 5<br>Suboptimal                                                                                                                                                                                                                                                                                                                                            | Marginal<br>Water fills 25-75% of the<br>available channel and/for infile<br>substrates are mostly exposed<br>4 3<br>Marginal                                                                                                                                                                                                                                                                                                                                 | Poor<br>Very little water in the channel and<br>mostly present in standing pools; or<br>stream is dry<br>2 1 0<br>Poor                                                                                                                                                                                                                                                                             | Pa<br>al.<br>1<br>770<br>99<br>WW<br>826<br>81,<br>81,<br>81<br>82<br>82<br>81<br>82<br>82<br>82<br>82<br>82<br>82<br>82<br>82<br>82<br>82<br>82<br>82<br>82                                                 |
|   | 6 CHANNEL F                         | LOW STATUS Optimal Water reaches the base of banks; <5% of channel su exposed 10 9 LTERATION Channelization, atleration, absent or maintal; normal                                                                                 | both lower<br>ubstrate is<br>8<br>or dredging<br>and stable                               | Suboptimal           Water fills >75% of the channel; o           <25% of channel substrate is exposed                                                                                                                                                                                                                                                                                                                                                       | Marginal Water fils 25-75% of the available channel and/or iffle substrates are mostly exposed 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                                                                                                                                                                                                                                                                                                                          | Poor<br>Very little water in the channel and<br>mostly present in standing pools; or<br>stream is dry<br>2 1 0<br>Poor<br>Banks shored with gabion, riprap, or<br>concrete. Concrete or riprap lined                                                                                                                                                                                               | Pa<br>al.<br>1<br>70<br>19<br>WW<br>88<br>81                                                                                                                                                                 |
|   | 6 CHANNEL F                         | LOW STATUS                                                                                                                                                                                                                         | both lawer<br>abstrate is<br>8<br>bot dredging<br>and stable<br>iteration by              | Suboptimal           Water fills >75% of the channel; o           <25% of channel substrate is                                                                                                                                                                                                                                                                                                                                                               | Marginal Water fills 25-75% of the available channel and/or ifile substrates are mostly exposed 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                                                                                                                                                                                                                                                                                                                         | Poor           Very lille water in the channel and<br>mostly present in standing pools; or<br>stream is dry           2         1         0           2         1         0           Banks shored with gabion, riprap inge<br>channels, instream habitat         nabitat                                                                                                                          | Pa<br>al.<br>1<br>770<br>99<br>WW<br>82<br>84<br>84<br>84<br>84<br>84<br>84<br>84<br>84<br>84<br>84<br>84<br>84<br>84                                                                                        |
|   | 6 CHANNEL F                         | LOW STATUS Optimal Water reaches the base of banks; <5% of channel su exposed 10 9 LTERATION Channelization, atleration, absent or maintal; normal                                                                                 | both lawer<br>abstrate is<br>8<br>bot dredging<br>and stable<br>iteration by              | Suboptimal           Water fills >75% of the channel; o           <25% of channel substrate is exposed                                                                                                                                                                                                                                                                                                                                                       | Marginal<br>Water fils 25.75% of the<br>available channel and/or iffle<br>substrates are mostly exposed<br>4<br>4<br>Marginal<br>Alteration or channelization<br>may be extensive;<br>embankments (including spoil<br>pices) or shoring structures<br>present on both banks, normal                                                                                                                                                                           | Poor           Very lillo water in the channel and<br>mostly present in standing pools; or<br>stream is dry           2         1         0           2         1         0           Banks shored with gabion, riprap, or<br>cancrete. Concrete or riprap lined<br>channels. Instream habitat<br>significantly altered by stormwater o<br>other inputs. Over 80% of the                           | Pa<br>al.<br>1<br>79<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9                                                                                                    |
|   | 6 CHANNEL F                         | LOW STATUS                                                                                                                                                                                                                         | both lawer<br>abstrate is<br>8<br>bot dredging<br>and stable<br>iteration by              | Suboptimal           Water fills >75% of the channel; o           <25% of channel substrate is exposed                                                                                                                                                                                                                                                                                                                                                       | Marginal<br>Water fills 25-75% of the<br>available channel and/or rifle<br>substrates are mostly exposed<br>4 3<br>Marginal<br>Alteration or channelization<br>may be extensive;<br>embankments (including spoil<br>pitos) or storing structures<br>) present on both banks; normal<br>stable stream meander pattern                                                                                                                                          | Poor<br>Very little water in the channel and<br>mostly present in standing pools; or<br>siteam is dry<br>2 1 0<br>Poor<br>Banks shored with gabion, riprap, or<br>cancrete. Concrete or riprap lined<br>channels. Instream habilat<br>significantly altered by stormwater o                                                                                                                        | Pa<br>al.<br>1<br>770<br>99<br>WW<br>82<br>84<br>84<br>84<br>84<br>84<br>84<br>84<br>84<br>84<br>84<br>84<br>84<br>84                                                                                        |
|   | 6 CHANNEL F                         | LOW STATUS  Optimal  Water reaches the base of banks; <5% of channel su exposed  10 9 LTERATION  Channelization, afteration, absent or maintait, normal stream meander pattern. A                                                  | both lawer<br>abstrate is<br>8<br>bot dredging<br>and stable<br>iteration by              | Suboptimal           Water fills >75% of the channel; o           <25% of channel substrate is                                                                                                                                                                                                                                                                                                                                                               | Marginal Water fills 25-75% of the available channel and/or iffle substrates are mostly exposed 4 4 4 4 4 4 4 4 5 Marginal Alteration of channelization may be extensive: embaakments (including spoil present on both banks: normal stable stream meander pattern thas not recovered, Alteration from storwater inputs may be                                                                                                                                | Poor           Very lillo water in the channel and<br>mostly present in standing pools; or<br>sitearn is dry           2         1         0           2         1         0           Banks shored with gabion, riprap, or<br>concrete. Concrete or inprap lined<br>channels, instream habital<br>significantly altered by stormwater o<br>other inputs. Over 80% of the<br>stream reach altered. | Pa<br>al.<br>1<br>70<br>19<br>WW<br>Ba<br>al.<br>8<br>al.<br>8<br>al.<br>8<br>al.<br>9<br>al.<br>1<br>7<br>9<br>8<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7       |
|   | 6 CHANNEL F                         | LOW STATUS  Optimal  Water reaches the base of banks; <5% of channel su exposed  10 9 LTERATION  Channelization, afteration, absent or maintait, normal stream meander pattern. A                                                  | both lawer<br>abstrate is<br>8<br>bot dredging<br>and stable<br>iteration by              | Suboptimal<br>Water fills >75% of the channel; o<br><25% of channel substrate is<br>exposed<br>7 6 5<br>Suboptimal<br>Some alteration or channelization<br>present, usually adjacent to<br>astructures, (such as bridge<br>dutumonts or culvents); evidence c<br>past alteration, (i.e., channelization<br>may be present, but streem patter<br>and stability have recovered; recer<br>alteration is not present. Minor<br>alteration or solorwaster or othe | Marginal           Water fills 25-75% of the<br>available channel and/or iffle<br>substrates are mostly exposed           4         3           4         3           Alteration or channelization<br>may be extensive;<br>embankments (inclusing spoil<br>pites) or storing structures<br>) present on both banks: normal<br>stable stream meander pattern<br>thas net recovered. Alteration<br>from stormwater inputs may be<br>extensive, 40.50% of stream | Poor           Very lillo water in the channel and<br>mostly present in standing pools; or<br>sitearn is dry           2         1         0           2         1         0           Banks shored with gabion, riprap, or<br>concrete. Concrete or inprap lined<br>channels, instream habital<br>significantly altered by stormwater o<br>other inputs. Over 80% of the<br>stream reach altered. | Pa<br>al.<br>1<br>70<br>19<br>WW<br>82<br>84<br>84<br>84<br>84<br>84<br>84<br>92<br>92<br>7<br>7<br>85<br>85<br>85<br>85<br>85<br>92<br>92<br>92<br>92<br>92<br>92<br>92<br>92<br>92<br>92<br>92<br>92<br>92 |
|   | 6 CHANNEL F                         | LOW STATUS  Optimal  Water reaches the base of banks; <5% of channel su exposed  10 9 LTERATION  Channelization, afteration, absent or maintait, normal stream meander pattern. A                                                  | both lawer<br>abstrate is<br>8<br>bot dredging<br>and stable<br>iteration by              | Suboptimal           Water fills >75% of the channel; o           <25% of channel substrate is                                                                                                                                                                                                                                                                                                                                                               | Marginal Water fills 25-75% of the available channel and/or iffle substrates are mostly exposed 4 4 4 4 4 4 4 4 5 Marginal Alteration of channelization may be extensive: embaakments (including spoil present on both banks: normal stable stream meander pattern thas not recovered, Alteration from storwater inputs may be                                                                                                                                | Poor           Very lillo water in the channel and<br>mostly present in standing pools; or<br>sitearn is dry           2         1         0           2         1         0           Banks shored with gabion, riprap, or<br>concrete. Concrete or inprap lined<br>channels, instream habital<br>significantly altered by stormwater o<br>other inputs. Over 80% of the<br>stream reach altered. | Pa<br>al.<br>1<br>70<br>19<br>WW<br>Ba<br>al.<br>8<br>4<br>8<br>4<br>8<br>4<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7                                                            |
|   | 6 CHANNEL F                         | LOW STATUS  Optimal  Water reaches the base of banks; <5% of channel su exposed  10 9 LTERATION  Channelization, afteration, absent or maintait, normal stream meander pattern. A                                                  | both lawer<br>abstrate is<br>8<br>bot dredging<br>and stable<br>iteration by              | Suboptimal<br>Water fills >75% of the channel; o<br><25% of channel substrate is<br>exposed<br>7 6 5<br>Suboptimal<br>Some alteration or channelization<br>present, usually adjacent to<br>astructures, (such as bridge<br>dutumonts or culvents); evidence c<br>past alteration, (i.e., channelization<br>may be present, but streem patter<br>and stability have recovered; recer<br>alteration is not present. Minor<br>alteration or solorwaster or othe | Marginal Water fills 25-75% of the available channel and/or iffle substrates are mostly exposed 4 4 3 Marginal Alteration or channelization may be extensive; embankments (including spoil pitos) or storing structures present on both banks; normal stable stream meander pattern thas net recovered. Alteration from stormwater inputs may be extensive, 40.90% of stream                                                                                  | Poor           Very lillo water in the channel and<br>mostly present in standing pools; or<br>sitearn is dry           2         1         0           2         1         0           Banks shored with gabion, riprap, or<br>concrete. Concrete or inprap lined<br>channels, instream habital<br>significantly altered by stormwater o<br>other inputs. Over 80% of the<br>stream reach altered. | Pa<br>al.<br>1<br>70<br>19<br>WW<br>Ba<br>al.<br>70<br>9<br>8<br>9<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>8<br>8<br>8<br>8<br>9<br>7<br>8<br>9<br>7<br>8<br>9<br>7<br>9<br>7                             |
|   | 6 CHANNEL F<br>Grade<br>7 CHANNEL A | LOW STATUS<br>Optimal<br>Water reaches the base of<br>banks; <5% of channel su<br>exposed<br>10 9<br>LTERATION<br>Channelization, alteration,<br>absent or mainial; normal<br>stream meander pallem, A<br>stornwater inputs absent | both lower<br>ubstrate is<br>8<br>or dredging<br>and stable<br>Iteration by<br>or minimal | Suboptimal           Water fills >75% of the channel; o           <25% of channel substrate is                                                                                                                                                                                                                                                                                                                                                               | Marginal<br>Water fils 25-75% of the<br>available channel and/or iffle<br>substrates are mostly exposed<br>4 3<br>Marginal<br>Alteration or channelization<br>may be extensive;<br>embankments (including spoil<br>pites) or sitoring structures<br>present on both banks: normal<br>stable stream meander pattern<br>has not recovered. Alteration<br>from stormwater inputs may be<br>extensive. 40-80% of stream<br>reach attered.                         | Poor           Very lillo water in the channel and<br>mostly present in standing pools; or<br>sitearn is dry           2         1         0           2         1         0           Banks shored with gabion, riprap, or<br>concrete. Concrete or inprap lined<br>channels, instream habitat<br>significantly altered by stormwater o<br>other inputs. Over 80% of the<br>stream reach altered. | Pa<br>al.<br>al.<br>770<br>99<br>98<br>86<br>81<br>87<br>92<br>97<br>97<br>97<br>97<br>97<br>97<br>97<br>97<br>97<br>97<br>97<br>97<br>97                                                                    |
|   | 6 CHANNEL F                         | LOW STATUS  Optimal  Water reaches the base of banks; <5% of channel su exposed  10 9 LTERATION  Channelization, afteration, absent or maintait, normal stream meander pattern. A                                                  | both lawer<br>abstrate is<br>8<br>bot dredging<br>and stable<br>iteration by              | Suboptimal<br>Water fills >75% of the channel; o<br><25% of channel substrate is<br>exposed<br>7 6 5<br>Suboptimal<br>Some alteration or channelization<br>present, usually adjacent to<br>astructures, (such as bridge<br>dutumonts or culvents); evidence c<br>past alteration, (i.e., channelization<br>may be present, but streem patter<br>and stability have recovered; recer<br>alteration is not present. Minor<br>alteration or solorwaster or othe | Marginal Water fills 25-75% of the available channel and/or iffle substrates are mostly exposed 4 4 3 Marginal Alteration or channelization may be extensive; embankments (including spoil pitos) or storing structures present on both banks; normal stable stream meander pattern thas net recovered. Alteration from stormwater inputs may be extensive, 40.90% of stream                                                                                  | Poor           Very lillo water in the channel and<br>mostly present in standing pools; or<br>sitearn is dry           2         1         0           2         1         0           Banks shored with gabion, riprap, or<br>concrete. Concrete or inprap lined<br>channels, instream habital<br>significantly altered by stormwater o<br>other inputs. Over 80% of the<br>stream reach altered. | Pa<br>al.<br>1<br>70<br>19<br>WW<br>Ba<br>al.<br>70<br>9<br>8<br>9<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>8<br>8<br>8<br>8<br>9<br>7<br>8<br>9<br>7<br>8<br>9<br>7<br>9<br>7                             |

|    |              | The bends in the<br>stream length 3 to<br>was in a straigh<br>braiding is consi-<br>plains and othe<br>parameter is no                                | o 4 times long<br>It line. (Note<br>dered normal<br>r low-lying ar                                     | er than if it<br>- channel<br>in coastat<br>eas, This                                               | stream k                                                                          | in the stream<br>ength 2 to 3 ti<br>il was in a str                                                     |                                                                                                                                                 | increase the<br>times longer th                                                                                                                                                                       | n the stream<br>stream 1 to 2<br>en If II was in a<br>ht line                                                                                                                                                               |                                                                                 | raight; waters<br>ized for a lon                                                                                     | vay has been<br>g distance                                                               | al.<br>RI<br>Pi<br>al.                      | larbo<br>II. 199<br>RBA #<br>Parso<br>II 20<br>LUSR                         |
|----|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|---------------------------------------------|-----------------------------------------------------------------------------|
|    | Grade        | 10                                                                                                                                                    | 9                                                                                                      | 8                                                                                                   |                                                                                   | 6                                                                                                       | 5                                                                                                                                               | 4                                                                                                                                                                                                     | 3                                                                                                                                                                                                                           | 2                                                                               | 1 7                                                                                                                  | 0                                                                                        | 0                                           |                                                                             |
|    |              |                                                                                                                                                       | *····                                                                                                  | <u> </u>                                                                                            | · /                                                                               | 1 0                                                                                                     | 1 2                                                                                                                                             | 4                                                                                                                                                                                                     | <u> </u>                                                                                                                                                                                                                    | L                                                                               |                                                                                                                      | 1                                                                                        | 0                                           |                                                                             |
| 9  | 9 BANK STAE  | SILITY (SCORE EA                                                                                                                                      | ACH BANK)<br>Optimal                                                                                   |                                                                                                     |                                                                                   | Suboptim                                                                                                | al                                                                                                                                              | Mar                                                                                                                                                                                                   | oinal                                                                                                                                                                                                                       | <b></b>                                                                         | Poor                                                                                                                 |                                                                                          |                                             |                                                                             |
|    |              | Banks stable; evi<br>failure absent or                                                                                                                |                                                                                                        |                                                                                                     |                                                                                   |                                                                                                         | equent, small<br>healed over.                                                                                                                   |                                                                                                                                                                                                       | stable; perennial<br>vaterline sparse                                                                                                                                                                                       |                                                                                 | no perennial<br>; severe eros                                                                                        |                                                                                          |                                             | Barbo<br>al. 19                                                             |
|    |              | affected), perenni<br>no raw or undercu<br>outside of mea<br>recently exposed                                                                         | al vegetation<br>It banks (som<br>ander bends (                                                        | to waterline;<br>e erosion on<br>D.K.); no                                                          | 5-30% of t<br>minor<br>undercuttic<br>waterline                                   | bank in reach<br>r erosion and<br>ng; perensial<br>e in most plac                                       | has areas of<br>/or bank<br>vegetation to                                                                                                       | (mainly scoure<br>lateral erosion<br>hard points<br>outcrops) ann<br>elsewhere; 30-<br>reach has area<br>bank undercu<br>exposed tree ro<br>hairs common                                              | d or stripped by<br>), bank held by<br>(trees, rock<br>d eroded back<br>-60% of bank in<br>s of erosion and<br>uting; recently<br>tols and fine rool<br>n; high erosion<br>uring floods                                     | banks; re<br>common;<br>undercu<br>eroded ar<br>along str<br>obvious ba<br>bank | cently expose<br>tree falls and<br>it trees comm<br>eas; "raw" ar<br>aight sections<br>ank sloughing<br>has erosions | ed tree roots<br>for severely<br>non; many<br>eas frequent<br>and bends;<br>; 60-100% of | R <sup>*</sup> P. あるひ N D 22 #: a           | RBA<br>Parso<br>AUSF<br>JSAC<br>Vorfo<br>Distric<br>2004<br>43; Si<br>and B |
|    | Grade        | 10                                                                                                                                                    | 1 9                                                                                                    | 8                                                                                                   | 7                                                                                 | 1 6                                                                                                     | 5                                                                                                                                               | 4                                                                                                                                                                                                     | 3                                                                                                                                                                                                                           | 2                                                                               | 1 1                                                                                                                  | 1 0                                                                                      |                                             | rom<br>Iensl                                                                |
|    | Grade        | 10                                                                                                                                                    | 9                                                                                                      | 8                                                                                                   | 7                                                                                 | 6                                                                                                       | 5                                                                                                                                               | 4                                                                                                                                                                                                     | 3                                                                                                                                                                                                                           | 2                                                                               | 1 1                                                                                                                  | 0                                                                                        | 0                                           |                                                                             |
|    |              |                                                                                                                                                       |                                                                                                        |                                                                                                     |                                                                                   |                                                                                                         |                                                                                                                                                 |                                                                                                                                                                                                       |                                                                                                                                                                                                                             |                                                                                 | Avg.Scon                                                                                                             | *1                                                                                       | 0                                           |                                                                             |
| 10 | 10 VEGETATIN | E PROTECTION                                                                                                                                          | (SCORE E/<br>Optimal                                                                                   | ACH BANK                                                                                            | }                                                                                 | Suboptim                                                                                                | al                                                                                                                                              | hAar                                                                                                                                                                                                  | ginal                                                                                                                                                                                                                       | ]                                                                               | Poor                                                                                                                 |                                                                                          |                                             |                                                                             |
|    |              | More than 90% of<br>and immediate ri<br>native vegets                                                                                                 | f the streamb<br>parian zones<br>htion, includin<br>shrubs, or nor<br>retative disrup<br>g minimal or  | covered by<br>g trees,<br>twoody<br>blion through<br>not evident;                                   | covered<br>one cla<br>represent<br>not alf<br>potential<br>than one               |                                                                                                         | ank surfaces<br>jetation, but<br>is not well-<br>n evident but<br>int growth<br>extent; more<br>otential plant                                  | 50-70% of the<br>surfaces covered<br>disruption obvi-<br>bare soil or con-<br>vegetation con-<br>one-half of the                                                                                      | ginal<br>le streambank<br>zd by vegetation<br>ious; patches of<br>losely cropped<br>nmon; less than<br>potential plant<br>ht remaining.                                                                                     | surfaces<br>disruption<br>is very h<br>removed                                  | n 50% of the<br>s covered by<br>of streambar<br>igh; vegetatio<br>to 5 centimet<br>rage stubble                      | vegetalion;<br>ik vegetation<br>in has been<br>ers or less in                            | ai<br>R<br>P<br>ai<br>A<br>K                | Barbo<br>Sarbo<br>RBA<br>Parso<br>Sal., 20<br>AUSF<br>KDW<br>2000           |
|    | Grade        | 10                                                                                                                                                    | 9                                                                                                      | 8                                                                                                   | 7                                                                                 | 6                                                                                                       | 5                                                                                                                                               | 4                                                                                                                                                                                                     | 3                                                                                                                                                                                                                           | 2                                                                               | 1                                                                                                                    | 0                                                                                        |                                             | Peter                                                                       |
|    | Grade        | 10                                                                                                                                                    | 9                                                                                                      | 8                                                                                                   | 7                                                                                 | 6                                                                                                       | 5                                                                                                                                               | 4                                                                                                                                                                                                     | 3                                                                                                                                                                                                                           | 2                                                                               | Avg.Scor                                                                                                             |                                                                                          | 0                                           |                                                                             |
| 11 |              | ZONE (SCORE EA                                                                                                                                        |                                                                                                        |                                                                                                     |                                                                                   |                                                                                                         |                                                                                                                                                 | ·····                                                                                                                                                                                                 | ·····                                                                                                                                                                                                                       |                                                                                 |                                                                                                                      |                                                                                          | 1                                           |                                                                             |
|    |              |                                                                                                                                                       | Optimal<br>zone >18 m<br>king lots, roa                                                                | dbeds, clear-                                                                                       | human act                                                                         |                                                                                                         | 12-18 motors;<br>mpacted zone                                                                                                                   | Width of ripa<br>meters; humai                                                                                                                                                                        | rginal<br>tian zone 6-12<br>n activilies have<br>te a great deal.                                                                                                                                                           | little or no                                                                    | Poor<br>riparian zone<br>riparian vege<br>human activit                                                              | tation due to                                                                            | a<br>R<br>P<br>a                            | Barbo<br>al., 19<br>RBA<br>Parso<br>al., 20<br>AUSF                         |
|    | Grade        | 10                                                                                                                                                    | 9                                                                                                      | 8                                                                                                   | 7                                                                                 | 6                                                                                                       | 5                                                                                                                                               | 4                                                                                                                                                                                                     | 3                                                                                                                                                                                                                           | 2                                                                               | 1                                                                                                                    | 0                                                                                        | 2                                           | 1001                                                                        |
|    |              |                                                                                                                                                       |                                                                                                        |                                                                                                     | 1                                                                                 | - 1                                                                                                     |                                                                                                                                                 | 1                                                                                                                                                                                                     |                                                                                                                                                                                                                             |                                                                                 | Avg.Scor                                                                                                             |                                                                                          | 2                                           |                                                                             |
| 12 | 12 RIPARIAN  | HABITAT CONDIT                                                                                                                                        |                                                                                                        | E EACH B                                                                                            | ANK)                                                                              |                                                                                                         |                                                                                                                                                 |                                                                                                                                                                                                       |                                                                                                                                                                                                                             |                                                                                 |                                                                                                                      |                                                                                          |                                             | Norfo                                                                       |
|    |              | Tree stratum (db<br>>60% tree canopy<br>layers may in<br>herbaceous, a<br>moses/lichens at<br>the high end c<br>additional layers<br>end if ≤1 additi | y cover. (Add<br>iclude: sapling<br>and leaf litter<br>nd woody deb<br>of Excellent ra<br>are present. | ditional forest<br>g, shrub,<br>including<br>wis.) Score a<br>inge if <u>&gt;</u> 2<br>Score at low | i with 30%<br>(See<br>examples<br>Score at i<br>if ≥2 ad<br>present<br>additional | to 60% free of<br>Excellent Cal<br>of additional<br>he high end of<br>Iditional fores<br>I. Score al lo | ches) present<br>canopy cover,<br>legory for<br>forest layers,<br>of Good range<br>t layers are<br>w end if ≤1<br>s are present.<br>with stumps | Tree stratum<br>present, with <<br>cover. (See Es<br>for example:<br>forest layers.) 4<br>end of Fai<br>additional laye<br>Score at k<br>additional laye<br>OR area co<br>maintained a<br>dense herbi | rginal<br>((db)>3 offs tree canopy<br>coellent Category<br>s of additional<br>Score at the high<br>r range $i \ge 2$<br>ers are present<br>are present<br>mistis of non-<br>nud naturelized<br>aceous and/or<br>regetation. | surface<br>lands, culv<br>mainta<br>denuded                                     | Poor<br>atum absent;<br>es, cropłands,<br>verted stream<br>ined herbace<br>surfaces, ac<br>pasture, and              | mine spoil<br>s, mowed and<br>ous areas,<br>lively grazed                                | 1 F                                         | SAAI<br>Form<br>Field                                                       |
|    | 2 Determi    |                                                                                                                                                       | e for each b<br>(or for field<br>Optimal                                                               | y measurin                                                                                          | g or estimation                                                                   | ating length                                                                                            | and width.<br>h) and Scor                                                                                                                       | Land Use GIS<br>e for each rìpa                                                                                                                                                                       | maps may be                                                                                                                                                                                                                 | used for ti<br>n the bloc                                                       | his.<br>ks below.<br>Poor                                                                                            | Ensure t<br>%Ripari<br>equ                                                               | Below<br>he sums of<br>ian Blocks<br>al 100 |                                                                             |
|    | Right Bank   | %Riparian Area<br>Score                                                                                                                               | ·                                                                                                      |                                                                                                     |                                                                                   |                                                                                                         |                                                                                                                                                 |                                                                                                                                                                                                       |                                                                                                                                                                                                                             |                                                                                 | 100<br>2                                                                                                             | 100                                                                                      | <u> </u> ]                                  |                                                                             |
|    |              | SubCl                                                                                                                                                 | 1                                                                                                      | 0                                                                                                   | 1                                                                                 | 0                                                                                                       |                                                                                                                                                 | 1                                                                                                                                                                                                     | 0                                                                                                                                                                                                                           | 1                                                                               | 2                                                                                                                    | 1                                                                                        |                                             |                                                                             |
|    | <u> </u>     | %Riparian Area                                                                                                                                        |                                                                                                        | <u> </u>                                                                                            | <u> </u>                                                                          | 60                                                                                                      |                                                                                                                                                 | 1                                                                                                                                                                                                     | 40                                                                                                                                                                                                                          | +                                                                               |                                                                                                                      | 100                                                                                      | ┨                                           |                                                                             |
|    | Left Bank    | Score                                                                                                                                                 | 1                                                                                                      |                                                                                                     | ļ                                                                                 | 5                                                                                                       |                                                                                                                                                 | 1                                                                                                                                                                                                     | 3                                                                                                                                                                                                                           |                                                                                 |                                                                                                                      |                                                                                          |                                             |                                                                             |
|    |              | SubCl                                                                                                                                                 |                                                                                                        | 0                                                                                                   | <u>I</u>                                                                          | 3                                                                                                       | ····.                                                                                                                                           | <u></u>                                                                                                                                                                                               | 1.2                                                                                                                                                                                                                         | SubCl=(                                                                         | 0<br>%RA*Score                                                                                                       | 1<br>s*0.01)                                                                             |                                             |                                                                             |
|    |              | ·····                                                                                                                                                 |                                                                                                        | · · · · · · · · · · · · · · · · · · ·                                                               | · · · · · · · · · · · · · · · · · · ·                                             |                                                                                                         |                                                                                                                                                 | T                                                                                                                                                                                                     | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                       | Rt Bank                                                                         | CI>                                                                                                                  | 4.2                                                                                      | Ci<br>3.1                                   |                                                                             |
|    | (            |                                                                                                                                                       |                                                                                                        |                                                                                                     |                                                                                   |                                                                                                         |                                                                                                                                                 |                                                                                                                                                                                                       |                                                                                                                                                                                                                             |                                                                                 |                                                                                                                      |                                                                                          |                                             |                                                                             |

0

|    | ROLOGIC FUN                        | CTIONS      |                                  |              | 05\10\2006   |                                | Highway 9                      | 04 Bridge       |                                |                                       |                                  |                | SCORE   | Reference<br>Source          |
|----|------------------------------------|-------------|----------------------------------|--------------|--------------|--------------------------------|--------------------------------|-----------------|--------------------------------|---------------------------------------|----------------------------------|----------------|---------|------------------------------|
| 1. | FLOW REGIME                        | :           |                                  |              |              |                                |                                | ······          |                                | ·····                                 |                                  |                |         | KDWP 2000                    |
|    | TYPE                               |             | Perennial                        |              | Intermitte   | nt w/ Perer                    | nial Pools                     | Inter           | mittent                        |                                       | Ephemera                         |                |         | Kowp 2000<br>Kansas          |
|    | Grade                              | 10          | 9                                | 8            | 7            | 6                              | 5                              | 4               | 3                              | 2                                     | 1                                | 0              | 4       | Subjective                   |
| 2. | CHANNEL CON                        | IDITION: I  | Measuremer                       | t or Observ  | ation of Str | eam Chanr                      | nel Condition                  | IS              |                                |                                       |                                  |                |         |                              |
|    |                                    |             |                                  |              | 001          |                                | ATEGORY (                      |                 | COPE                           |                                       |                                  |                |         | Barbour, 1999                |
|    |                                    |             | Optimal                          |              |              | Suboptima                      |                                |                 | ginal                          | 1                                     | Poor                             |                |         | EPA RBA page                 |
|    |                                    |             | hannel; no st                    |              | Some ch      | annelization                   | (usually in                    | Allered cha     | nnol; 40-80%                   |                                       | I is actively do                 |                |         | 5-21: Newton,                |
|    |                                    |             | ion minimal, 1                   |              |              | reas) or pas                   |                                |                 | n channelized                  |                                       | >80% of the re<br>lized. Degrada |                |         | 1998 USDA/                   |
|    | 2a.Channel                         |             | tting or exces<br>Normal freq    |              |              |                                | id and banks                   |                 | ied. Excess<br>ion; braided    |                                       | s preveni acce                   |                |         | NRCS SVAP                    |
|    | Condition/Alter<br>ation (natural, | hydrologi   | cal connectio                    | n between    |              |                                | of overbank                    | channel w       | ith.excessive                  |                                       | floodplain.                      |                |         | page 7                       |
|    | allered, or                        | chan        | nnel and flood                   | lplain.      | flow         | s onto flood                   | lplain.                        |                 | of overbank<br>he floodplain   |                                       |                                  |                |         |                              |
|    | downcutting)                       |             |                                  |              |              |                                |                                |                 | ncision,dikes                  |                                       |                                  |                |         |                              |
|    |                                    |             |                                  |              |              |                                |                                |                 | es restrict                    |                                       |                                  |                |         |                              |
|    |                                    |             |                                  |              |              |                                |                                | fioo            | dplain.                        |                                       |                                  |                |         |                              |
|    |                                    |             |                                  |              |              |                                |                                |                 |                                |                                       |                                  |                |         |                              |
|    |                                    |             |                                  |              |              |                                |                                |                 |                                | (                                     |                                  |                |         |                              |
|    | Grade                              | 10          | 9                                | 8            | 7            | 6                              | 5                              | 4               | 3                              | 2                                     | 1 1                              | 0              | 0       |                              |
|    |                                    |             | J                                | ~~~~         | 1            |                                |                                | I               |                                |                                       |                                  |                |         |                              |
|    |                                    |             |                                  |              |              |                                | TEGORY (                       |                 |                                | · · · · · · · · · · · · · · · · · · · |                                  |                |         | w/ assistance                |
|    | 2b.Channel                         | Chaprel C-  | Optimal<br>pacity to Flow        | Francisco    |              | Suboptima                      |                                |                 | rginal<br>Capacity to          | Channel                               | Poor<br>Capacity to Fit          | W Francisco    |         | and input from               |
|    | Capacity to                        |             | h that bank o                    |              |              |                                |                                |                 | capacity to<br>ency Ratio is   |                                       | uch that bank                    |                |         | Dr. Mike<br>Harvey and St    |
|    | Flow<br>Frequency                  |             | nts occur at a                   |              |              |                                | frequent that                  | such that t     | ank overflow                   | slorm ev                              | ents are more                    |                |         | Travant                      |
|    | Ratio (for 2-                      | У           | vear frequency<br>0.75-1.25      | ý,           |              | 5 years or le<br>1 every 2,5 y | ess frequent                   |                 | n events are<br>quent than     | every ha                              | If year or less<br>every 10 year |                |         | ]                            |
|    | year peak                          |             | 0.70-1.20                        |              |              | =0.75 or >1.                   |                                |                 | ear or less                    |                                       | <0.24 or >2                      |                |         |                              |
|    | flow)                              |             |                                  |              |              |                                |                                | frequent I      | han every 5                    |                                       |                                  |                |         |                              |
|    |                                    |             |                                  |              |              |                                |                                |                 | ars.<br>or >1.5                |                                       |                                  |                |         |                              |
|    |                                    |             |                                  |              |              |                                |                                |                 |                                | ļ                                     |                                  |                |         |                              |
|    | Grade                              | 10          | 9                                | 8            | 7            | 6                              | 5                              | 4               | <u>  3</u>                     | 2                                     | 1                                | 0              | 0       |                              |
|    |                                    |             |                                  |              | CON          | DITION C                       | ATEGORY                        | BRADE or        | SCORE                          |                                       |                                  |                |         | Newton, 1998                 |
|    |                                    |             | Optimal                          |              |              | Suboptima                      |                                |                 | rginal                         | 1                                     | Poor                             | ************   |         | USDA/ NRCS                   |
|    |                                    |             | le; evidence                     |              |              |                                | equent, smal                   |                 | ely unstable;                  |                                       | ; no perennial                   |                |         | SVAP page                    |
|    | 2c.Channel                         |             | e absent or m<br>k affected), p  |              |              |                                | healed over.<br>Thas areas c   |                 | vegelation to<br>parse (mainly |                                       | ne; severe ero<br>ecently expos  |                |         | 10; Barbour, et              |
|    | Bank Stability                     | vegetatio   | n to waterline                   | ; no raw or  | minor        | erosion and                    | l/or bank                      | scoured o       | r stripped by                  | commo                                 | n; tree falls and                | d/or severely  |         | al., 1999 EPA<br>RBA page 5- |
|    | (score each                        |             | banks (some<br>meander ben       |              |              |                                | l vegetation t                 |                 | osion), bank                   |                                       | trees common<br>'raw" areas fre  |                |         | 26; USACE,                   |
|    | bank, left or<br>right facing      |             | exposed roots                    |              |              |                                | ces; recently<br>a but present |                 | hard points<br>ck outcrops)    |                                       | ections and be                   |                |         | Norfolk                      |
|    | downstream)                        |             | tree falls;                      |              |              |                                |                                | and ero         | ded back                       | bank slou                             | ighing; 60-100                   | % of bank has  |         | District, 2004               |
|    |                                    |             |                                  |              |              |                                |                                |                 | e; 30-60% of<br>ich has areas  |                                       | erosional sca                    | irs,           |         |                              |
|    |                                    |             |                                  |              |              |                                |                                |                 | in and bank                    | 1                                     |                                  |                |         |                              |
|    |                                    |             |                                  |              | 1            |                                |                                |                 | ing; recently                  |                                       |                                  |                |         |                              |
| 1  |                                    |             |                                  |              |              |                                |                                | fine root by    | ree roots and<br>airs common:  | 1                                     |                                  |                |         |                              |
|    | Grade (Left)                       | 10          | 9                                | 8            | 7            | 6                              | 5                              | 4               | 3                              | 2                                     | 1                                | 0              | 2       |                              |
|    | Grade (Right)                      | 10          | 9                                | 8            | 7            | 6                              | 5                              | 4               | 3                              | 2                                     | 1                                | 0<br>Avg.Score | 2       |                              |
|    | l                                  |             |                                  |              |              |                                |                                | ·····           |                                |                                       |                                  | Avg.Scole      | <u></u> | 1                            |
| 3  | CHANNEL ROI                        | JGHNESS     | FACTORS                          |              |              |                                |                                |                 |                                |                                       |                                  |                | 1       | 1                            |
|    |                                    |             |                                  | ·            |              |                                |                                |                 |                                |                                       |                                  |                |         |                              |
|    |                                    |             | Ontime                           |              | CON          |                                | ATEGORY                        |                 |                                | 1                                     | Poor                             |                | {       | Barbour, 1999                |
|    | 3a.Channel                         | The bends i | Optimal<br>in the stream         | increase the | The bends i  | Suboptima<br>n the stream      |                                | Ma<br>The bends | in the stream                  | Channel                               | Poor<br>straight; water          | way has been   |         | EPA RBA<br>Chapter 5 pag     |
|    | Sinuosity                          | stream ler  | ngih 2.5 to 4 t                  | imes longer  | stream leng  | yth 1.5 to 2.8                 | 5 times longe                  | increase        | the stream                     | chann                                 | elized for a lor                 | g distance.    |         | 5-25; KDWP,                  |
|    | (bends in low<br>gradient          |             | was straight,<br>illey length at |              |              |                                | line. Channe                   |                 | to 1.5 times                   | Channe                                | al length/valley                 | length_1.0     |         | 1996                         |
|    | stream)                            | iengni/va   | mey lengin ai                    | 19651 - 1.5. | iengany      | alley length                   | 1.210 1.5                      |                 | an if it was a<br>ne. Channel  |                                       |                                  |                | 1       |                              |
|    |                                    |             |                                  |              |              |                                |                                | length/val      | ley length 1.0                 |                                       |                                  |                |         |                              |
|    |                                    |             |                                  |              |              |                                |                                | to              | 1.2.                           |                                       |                                  |                | ļ       |                              |
|    | Grade                              | 10          | 9                                | 8            | 7            | 6                              | 5                              | 4               | 3                              | 2                                     | 1                                | 0              | 2       | ]                            |
|    |                                    |             |                                  |              |              | DITION                         |                                | 20402           |                                |                                       |                                  |                | 4       |                              |
|    | 1                                  |             | Optimal                          |              | CON          | DITION C/<br>Suboptima         | ATEGORY                        |                 | SCORE                          | T                                     | Poor                             |                | 4       | KDWP, 1996<br>Kansas         |
|    |                                    | Little or r | no channel er                    | largement    | Some oray    |                                | arse stones                    |                 | bars of rocks                  | Channel                               | divided into br                  | aids or stream | 1       | Subjective                   |
|    | 3b. Bottom                         | resu        | lling from sea                   | liment       | and well-wa  | shed debris                    | present, little                | sands, and      | silt common                    | is chanr                              | nelized; substr                  | ate is uniform |         | Evaluation of                |
|    | Substrate                          | accumu      | lation; channe                   | el is stable | silt;        | moderately                     | stable                         | moderal         | ely unstable                   | sand, sil                             | t, clay, or bedr                 | ock; unstable  | 1       | Aquatic                      |
|    | Composition                        |             |                                  |              |              |                                |                                | [               |                                |                                       |                                  |                | 1       | Habitats                     |
|    |                                    |             |                                  |              |              |                                |                                |                 |                                |                                       |                                  |                |         |                              |
|    |                                    |             |                                  |              |              |                                |                                | 1               |                                |                                       |                                  |                |         |                              |
|    | Grade                              | 10          | 9                                | 8            | 7            | 6                              | 5                              | 4               | 3                              | 2                                     | 1                                | 0              | 0       |                              |
|    |                                    |             |                                  |              |              |                                |                                |                 |                                |                                       |                                  |                |         |                              |

.

|                                               |                                          |                                                                          |                                     |                                                 |                   |                         |       |               |                     | lanus (1945) | KHIMIIIIIIIIIIIIIIIIIIII |             | ~~~~    |                          |                                | 1        | [                           |
|-----------------------------------------------|------------------------------------------|--------------------------------------------------------------------------|-------------------------------------|-------------------------------------------------|-------------------|-------------------------|-------|---------------|---------------------|--------------|--------------------------|-------------|---------|--------------------------|--------------------------------|----------|-----------------------------|
| 1                                             |                                          |                                                                          |                                     |                                                 | 00                | UDITION                 | 188   | TEGORY (      |                     | SCO          | NOE                      |             |         |                          |                                |          | KDWP, 1996;                 |
|                                               |                                          | Optima                                                                   |                                     |                                                 |                   | Subop                   |       |               |                     | argin        |                          |             |         | Poor                     |                                |          | Newton et al.,              |
|                                               | Divoreo h                                |                                                                          |                                     | hy including                                    | Channel           |                         |       | es 5-7 of the |                     |              |                          | Chang       | el hot  |                          | es <3 of the                   |          | 1998                        |
| Sc. Instream<br>Bottom<br>Topography<br>Grade | >7 of th<br>boulders<br>debris<br>overha | ne following<br>gravel, log<br>s, backwate<br>nging vege<br>ited shallow | g: der<br>gs/lar<br>ers/o<br>etatio | ep pools,<br>rge woody<br>xbows,<br>m, riffles, |                   |                         |       | I Category    | < 5 of the          | item         | s listed in<br>tegory    |             |         |                          | I Calegory                     |          | USDAVNRCS<br>SVAP page 1:   |
|                                               |                                          | ut banks, or<br>pools                                                    | r side                              |                                                 |                   |                         |       |               |                     |              |                          |             |         |                          |                                |          |                             |
| Grade                                         | 10                                       | 9                                                                        | Т                                   | 8                                               | 7                 | 6                       |       | 5             | 4                   |              | 3                        | 2           |         | 1                        | 0                              | 1        |                             |
| 202                                           |                                          | •                                                                        |                                     |                                                 |                   |                         |       |               |                     | 000          |                          |             |         |                          |                                |          |                             |
|                                               |                                          | Optima                                                                   | al                                  | ·                                               |                   | Subop                   |       | TEGORY (      |                     | argin        |                          | r           |         | Роог                     |                                |          |                             |
| Di Oľ<br>3c, Manning's                        | ·····                                    | 0.05 to 0.                                                               |                                     |                                                 |                   | 0.035 k                 |       |               | 0.021 10 0          |              |                          | 0.16        | to D.2  | 20 due to 6              | excessive                      | { · · ·  |                             |
| n sc. Maining s                               |                                          |                                                                          |                                     |                                                 |                   |                         |       |               |                     | 0,15         |                          |             | neliza  |                          | )1 to 0.02 due<br>lean, smooth |          |                             |
| Grade                                         | 10                                       | 9                                                                        |                                     | 8                                               | 7                 | 6                       |       | 5             | 4                   |              | 3                        | 2           |         | 1                        | 0                              |          |                             |
|                                               |                                          |                                                                          |                                     |                                                 |                   | UDITION                 | 100   | TEGORY        | DADE -              | 000          | 200                      | <del></del> |         |                          | ······                         |          | USACE,                      |
|                                               |                                          | Optim                                                                    | al                                  |                                                 |                   | Subop                   |       |               |                     | argin        |                          |             |         | Poor                     |                                | {        | Norfolk                     |
| 3d. Channel                                   | Incision r                               | alio_>1.0 <                                                              |                                     | ind Where                                       |                   | atio_1.2                | <1.4  | and Where     | Incision r          |              |                          | Incision    | ratio > |                          | inere channel                  |          | District, 2004              |
| Incision                                      |                                          |                                                                          |                                     | renchment                                       |                   |                         |       | trenchment    |                     |              | shannel                  |             |         |                          | ent ratio_4.4;                 | 1        | SAAM Form                   |
| (TLB/BFD=BH                                   |                                          | 4; Where<br>Entrenchma                                                   |                                     |                                                 |                   |                         |       | nnel slope    |                     | pe > 2       |                          |             |         | hannel sio<br>chment rat |                                |          | #1 and VT                   |
| R; 1/BHR*Adj<br>Factor =CI)                   | <u>&lt;</u> 2%; t                        | intrencome                                                               | entra                               | atio >20                                        | <u>&lt;</u> 2%, E | ntrenchn                | nent  | ratio >2.0    | Entrench            |              | auo > 1.4;<br>iei slope  | 5           | nırənc  | nment rat                | 10_42.0                        |          | Stream                      |
| Facior                                        |                                          |                                                                          |                                     |                                                 |                   |                         |       |               |                     |              | chment                   |             |         |                          |                                |          | Geomorphic                  |
|                                               |                                          |                                                                          |                                     | [                                               |                   |                         |       |               | ra                  | tio >2       | .0                       |             |         |                          |                                |          | Assessment<br>Phase 2       |
| TLB =                                         |                                          | 10                                                                       |                                     |                                                 | BHR =             |                         |       |               | ļ                   |              |                          |             |         |                          |                                | -        | i nuse a                    |
| BFD =                                         |                                          | 10                                                                       |                                     |                                                 | BHK =             | 1                       |       |               |                     |              |                          |             |         |                          |                                | 1        |                             |
| Grade                                         | 10                                       | 1 9                                                                      | T                                   | 8                                               | 7                 | 6                       |       | 5             | 4                   | <u> </u>     | 3                        | 2           | T       | 1                        | 0                              | 1 1      |                             |
| ·                                             |                                          |                                                                          |                                     |                                                 |                   |                         |       |               | L                   |              |                          |             |         |                          |                                |          |                             |
| 4 DYNAMIC SUF                                 | RFACE W/                                 | ATER STO                                                                 | ORA                                 | GE                                              |                   |                         |       |               |                     |              |                          |             |         |                          |                                | 1        |                             |
|                                               |                                          | •                                                                        |                                     | •                                               |                   |                         |       | TEOODV        | 0.00                |              |                          |             |         |                          |                                | {        | N                           |
|                                               |                                          | Oplim                                                                    | ~                                   | ·                                               |                   | Subop                   |       | TEGORY (      |                     | argin        |                          | I           |         | Poor                     |                                |          | Newton, et al<br>1998 USDAJ |
| 4a.Pools                                      | Deep an                                  |                                                                          |                                     | abundant;                                       | Pools or          |                         |       | abundant;     |                     |              | ent, but                 | Pools a     | bsent   |                          | tire boltom is                 | 1        | NRCS SVAF                   |
| (abundant,                                    | greater Ih                               | an 30% of                                                                | the p                               | pool bottom                                     | from 10-          | 30% of th               | ie po | ol bottom is  |                     |              | 5-10% of                 |             |         | e. No wat                |                                |          | page 14;                    |
| present or                                    |                                          | e due to de<br>1 least 5 fer                                             |                                     | or pools are                                    |                   | due to de<br>at least 3 |       | or the pools  | the po<br>obscure o |              | ttom is                  |             |         |                          |                                |          | Barbour, et a               |
| absent)                                       | a                                        | , least 5 let                                                            | elue                                | ep.                                             | are               | at least 3              | ieet  | deep.         | the pools           |              |                          |             |         |                          |                                |          | 1999                        |
|                                               |                                          |                                                                          |                                     |                                                 |                   |                         |       |               |                     | et dee       |                          |             |         |                          |                                | 1        |                             |
|                                               |                                          |                                                                          |                                     |                                                 |                   |                         |       |               |                     |              |                          |             |         |                          |                                |          |                             |
| Grade                                         | 10                                       | 9                                                                        | Τ                                   | 8                                               | 7                 | 6                       |       | 5             | 4                   | T            | 3                        | 2           |         | 1                        | 0                              | 3        | 1                           |
|                                               |                                          |                                                                          |                                     |                                                 |                   |                         |       |               |                     |              |                          |             |         |                          |                                | 1        | ]                           |
| 4b. Channel<br>Flow Status                    |                                          | 0                                                                        |                                     |                                                 | CO                |                         |       | TEGORY        |                     |              |                          |             |         |                          |                                |          |                             |
| (degree to                                    | \Mater re                                | Optim<br>aches bas                                                       |                                     | halfs lower                                     | Water fi          | Subop                   |       | e available   | Water fills         | argin        |                          | Ven litt    | a wat   | Poor                     | nel and mosti                  | -        | Barbour, et a<br>1999 EPA R |
| which channel                                 |                                          | and minim                                                                |                                     |                                                 |                   | iel; or <25             |       |               |                     |              | nnel, and                |             |         |                          | s, No water =                  | 1        | page 5-19 /A                |
| is filled)                                    |                                          | el substrate                                                             | e is e                              | exposed.                                        |                   | bstrate is              |       |               |                     |              | rates are                | 1           |         | zero.                    |                                |          | 9#5; TCEQ                   |
|                                               |                                          |                                                                          |                                     |                                                 |                   |                         |       |               | most                | y exp        | osed.                    |             |         |                          |                                |          | 1999; VANR.                 |
| Grade                                         | 10                                       | 9                                                                        |                                     | 8                                               | 7                 | 6                       |       | 5             | 4                   |              | 3                        | 2           |         | 1                        | 0                              | 2        | 2005                        |
|                                               |                                          |                                                                          |                                     |                                                 |                   |                         |       |               | L                   |              |                          | Į           |         |                          |                                | <u> </u> |                             |
|                                               |                                          |                                                                          |                                     |                                                 |                   |                         | Calc  | ulation of I  | unction C           | apac         | ity Index                | = Total \$  | Score   |                          | ssible Score                   |          | 1                           |
|                                               |                                          |                                                                          |                                     |                                                 |                   |                         |       |               |                     |              |                          |             |         |                          | FCI = #/100                    | 1        |                             |

and the second second

|                         | TYPE                         |               | · · · · · · · · · · · · · · · · · · · |                                     | [                                       |                            |            |           |               |                                     | T            |                         |          |                               | ] | Source               |
|-------------------------|------------------------------|---------------|---------------------------------------|-------------------------------------|-----------------------------------------|----------------------------|------------|-----------|---------------|-------------------------------------|--------------|-------------------------|----------|-------------------------------|---|----------------------|
| 1.                      | NOTES<br>SEDIMENT TR         | ANSPORT       | DEPOSI                                | TION                                |                                         |                            |            |           |               |                                     |              |                         |          |                               | 1 |                      |
|                         |                              |               |                                       |                                     |                                         |                            |            |           |               |                                     |              |                         |          |                               | 1 |                      |
|                         |                              |               | Optimai                               |                                     | <u>, cc</u>                             | NDITION                    |            | GORY (    | SRADE or      | SCORE<br>arginal                    |              | Po                      |          |                               |   | Newton,<br>et al.,   |
|                         | 1a, Bank<br>Stability (score | Banks stab    |                                       | e of erosion o                      | Moderate                                |                            |            | nl, smal  | Moderate      | y unstable; 30                      | - Unstable;  |                         |          | reas; "raw                    |   | 1998                 |
|                         | each bank, left              |               |                                       | r minimal; little<br>blems, <5% c   |                                         |                            |            |           | 60% of ba     | nk in reach ha                      | is areas     |                         |          | straight                      |   | USDA/NR              |
|                         | or right facing              |               | bank affect                           |                                     | 3-30% 01                                | erosíc                     |            | aleas o   |               | erosion; high<br>otential during    |              |                         |          | ious bank<br>bank has         |   | CS SVAP<br>page 10;  |
|                         | downstream)                  |               |                                       |                                     |                                         |                            |            |           | t t           | oods.                               |              | erosiona                | I scars  |                               |   | Barbour,             |
|                         |                              |               |                                       |                                     |                                         |                            |            |           |               |                                     |              |                         |          |                               |   | et al.,              |
|                         | Grade (Left)                 | 10            | 9                                     | 8                                   | 7                                       | 6                          | 1          | 5         | 4             | 3                                   | 2            | 1                       |          | 0                             | 2 | 1999 EPA             |
|                         | Grade (Right)                | 10            | 9                                     | 8                                   | 7                                       | 6                          |            | 5         | 4             | 3                                   | 2            | 1                       |          | 0                             | 2 |                      |
|                         | l                            |               |                                       |                                     |                                         |                            | ······     |           |               |                                     |              |                         | <i>F</i> | vg.Score                      | 2 | -                    |
|                         |                              |               |                                       |                                     | CC                                      | NDITION                    | CATE       | GORY      | SRADE or      | SCORE                               |              |                         |          |                               | - | Galli,               |
|                         | 1b. Channel                  |               | Optima                                |                                     |                                         | Subopt                     | imal       |           | M             | arginal                             |              | Po                      |          |                               | ] | 1996                 |
| Variable                | Bottom Bank                  |               |                                       | jenerally highly<br>Irix or maleria |                                         | 1/3 of bar<br>plant/soil n |            |           |               | 1/3 of bank is<br>highly erodibl    |              |                         |          | rally highly<br>soil matrix   |   | Wash-<br>COG         |
| Varí                    | Stability                    |               |                                       |                                     |                                         |                            |            |           | material;     | olant/soil matr                     |              | erely co                |          |                               |   | RSAT                 |
| One                     |                              |               |                                       |                                     |                                         |                            |            |           | com           | promised.                           |              |                         |          |                               |   | No. 1                |
|                         | Grade (Left)                 | 10            | 9                                     | 8                                   | 7                                       | 6                          | T          | 5         | 4             | 3                                   | 2            | 1                       |          | 0                             | 0 |                      |
| Only                    | Grade (Right)                | 10            | 9                                     | 8                                   | 7                                       | 6                          |            | 5         | 4             | 3                                   | 2            | 1                       |          | 0                             | 0 |                      |
| e for                   |                              |               |                                       |                                     |                                         |                            |            |           |               |                                     |              |                         | /        | vg.Score                      | 0 |                      |
| Score                   | or                           |               |                                       |                                     | CC                                      |                            |            | GORY      | GRADE or      |                                     |              |                         |          |                               |   | Barbour,             |
| Enter 5                 | 1c. Channel<br>Sediments or  | >50% are      | Optima<br>avel or larg                | er substrate;                       | 30-50%                                  | Subopt<br>gravel or l      |            | hstrate'  |               | arginal<br>gravel or larg           | er Substratz | Po                      |          | i, silt, clay                 | - | et al.,<br>1999 ;    |
| 띱                       | Substrate                    | gravel, col   | bble bould                            | ers; dominant                       | domina                                  | nt substrat                | te type is | s mix of  | substra       | te; dominant                        | 01           | bedrock                 |          |                               | 1 | Petersen,            |
|                         | Composition                  | substrate     | type is gra<br>stable                 | avel or larger;                     |                                         | rith some f<br>noderatel   |            | liments;  |               | ype is finer tha<br>It may still be |              |                         |          |                               |   | et al.,              |
|                         | Grade                        | 10            | 9                                     | 8                                   | 7                                       | 1 6                        |            | 5         | 4             | 3                                   | 2            | 1                       |          | 0                             | 2 | 1992                 |
| 2                       | WATER APPE                   | ARANCE: (     | Clarity or '                          | Visibility                          |                                         |                            |            |           | J             |                                     |              |                         |          |                               | 1 |                      |
|                         |                              |               |                                       |                                     |                                         | MOITION                    | ICATE      | COBY      | GRADE or      | SCOPE                               |              |                         |          |                               | - | Newton,              |
|                         |                              |               | Optima                                | 1                                   | <u>_</u>                                | Subopt                     |            | GURIN     |               | arginal                             | T            | Po                      | or       |                               | 1 | et al.,              |
|                         |                              |               |                                       | ut tea-colored<br>1 3-6 feet (less  |                                         | ally cloudy<br>event, but  |            |           | Consider      | able cloudines<br>le time; object   | s Very turbi |                         |          | pth <0,5 ft;                  | ] | 1998                 |
|                         | Water Clarity                | if slightly c | colored); n                           | o oil sheen on                      | objects vi                              | sible al de                | epth 1.5-  | 3 ft; mag | visible to a  | lepth 0.5-1.5                       | slow movi    | ng water n              | nay be t | right-green;                  |   | USDA/<br>NRCS        |
|                         | vealer charity               |               |                                       | able film on<br>ts or rocks.        |                                         | lightly grei<br>en on wat  |            |           | slow section  | ons may appe<br>n; bottom rock      | algal mats.  | surface so              | cum, she | its; floating<br>ien or heav; |   | SVAP                 |
|                         |                              |               |                                       |                                     |                                         |                            |            |           | or sume       | rged objected                       |              | n on suría              | ce. No 1 | valer = zero                  | 2 | page 11              |
|                         |                              |               |                                       |                                     |                                         |                            |            |           | cover         | ed with film.                       |              |                         |          |                               |   |                      |
|                         |                              |               |                                       |                                     |                                         |                            |            |           |               |                                     |              |                         |          |                               |   |                      |
|                         | Grade                        | 10            | 9                                     | 8                                   | 7                                       | 6                          |            | 5         | 4             | 3                                   | 2            | 1                       | I        | 0                             | 2 | 1                    |
| 2                       | DDESENCE OF                  |               | VECETI                                | TIONI: Droco                        | non ond I                               | Doroont C                  | 0.0000     |           |               |                                     |              |                         |          |                               | 4 |                      |
| 3                       | PRESENCE O                   | AUAIN         | VLUCIA                                | TION. PIES                          | and dill t                              | GICCIN C                   | overage    | -         |               |                                     |              |                         |          |                               | 1 |                      |
|                         |                              |               |                                       |                                     | 00                                      |                            |            | GORY      | GRADE or      |                                     |              |                         |          |                               | ] | Newton,              |
| <u>e</u>                |                              | Clearve       | Optima                                | I<br>entire reach:                  | Fairly de                               | Subopt                     |            | lish wate |               | arginal<br>/ater along entir        | Pea pres     | Po<br>n. oray. or       |          | vater along                   | 4 | et al.,<br>1998      |
| uiable                  | 3a. Nutrient                 | diverse a     | iquatic plai                          | nt community                        | along er                                | tire reach                 | ; modera   | ale algal | reach; overa  | ibundance of lu                     | sh entir     | e reach; di             | ense sta | nds of                        |   | USDA/                |
| s Va                    | Enrichment                   |               |                                       | aties of many<br>des; little algal  |                                         | n on strea                 | m substi   | rates.    |               | phyles; abunda<br>especially duri   |              |                         |          | evere algal<br>ts in stream   |   | NRCS                 |
| One                     |                              |               | rowth pres                            |                                     |                                         |                            |            |           | warn          | er months.                          |              | gae prese<br>strale. No |          | unstable                      |   | SVAP<br>page 12      |
| hly.                    |                              |               |                                       |                                     |                                         |                            |            |           |               |                                     | 300.         | Maie. 140               | wate: •  | 2010.                         |   | page 12              |
| Score for Only One Vari | Grade                        | 10            | 9                                     | 8                                   | 7                                       | 6                          |            | 5         | 4             | 3                                   | 2            | 1                       |          | 0                             |   | 1                    |
| ie f                    |                              |               |                                       |                                     | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | NIDITIO                    | LCATE      | CODV -    | DADE          | 00005                               |              |                         |          |                               | - | Determon             |
| Sco                     | or                           |               | Optima                                | 1                                   |                                         | Subopt                     |            | GURY      | GRADE or<br>M | arginal                             |              | Po                      | or       |                               | 4 | Petersen,<br>et al., |
| Enter                   | 3b. Aquatic                  |               | seni, aqua                            | tic vegetation                      |                                         | dominant i                 | in pools,  |           | Algal mate    | present, son                        |              | ats cove                | r bollo  | m, larger                     | ] | 1992                 |
| ш                       | Vegetation                   | consists o    | of moss ar<br>algae.                  | id patches of                       | '                                       | plants alon                | ng edge.   |           | liarger plar  | its, few mosse                      |              |                         |          | nnel ar NC<br>Instable        | 1 | RCE form             |
|                         |                              |               |                                       |                                     |                                         |                            |            |           |               |                                     |              | rate. No                |          |                               |   | No. 13               |
|                         | Grade                        | 10            | 9                                     | 8                                   | 7                                       | 6                          |            | 5         | 4             | 3                                   | 2            | 1                       |          | 0                             | 1 | ]                    |
|                         | 1                            |               |                                       |                                     |                                         |                            |            |           |               |                                     |              |                         |          |                               | 1 | 1                    |
|                         |                              |               |                                       |                                     |                                         |                            |            |           |               |                                     |              |                         |          |                               |   |                      |
|                         |                              |               |                                       |                                     |                                         |                            |            |           |               |                                     |              |                         |          |                               |   |                      |
|                         |                              |               |                                       |                                     |                                         |                            |            |           |               |                                     |              |                         |          |                               |   |                      |

|                                                                   |                             |                                                                            |                               | 0.0                      | UDITION C.                        | ATEGORY (                                | GRADE or S                                               | SCORE                                                                                                    |                                           |                                |                                                                                       | P                               |
|-------------------------------------------------------------------|-----------------------------|----------------------------------------------------------------------------|-------------------------------|--------------------------|-----------------------------------|------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------|---------------------------------------------------------------------------------------|---------------------------------|
|                                                                   |                             | Optimal                                                                    |                               | <u> </u>                 | Suboptima                         |                                          |                                                          | irginal                                                                                                  | [                                         | Poor                           |                                                                                       | e                               |
|                                                                   |                             | sisting of leav                                                            |                               |                          | and wood s                        | carce; fine                              | No leav                                                  | es or woody                                                                                              |                                           |                                | - black in color                                                                      | 1                               |
|                                                                   | W                           | ithout sedim                                                               | ent.                          | organic (                | iebris wilhou                     | it sediment.                             | organic                                                  | arse and fine<br>matter with<br>liment.                                                                  |                                           |                                | erobic) or no<br>e to excessive                                                       | R                               |
| Grade                                                             | 10                          | 9                                                                          | 8                             | 7                        | 6                                 | 5                                        | 4                                                        | 3                                                                                                        | 2                                         | 1                              | 0                                                                                     | 2                               |
| LAND USE PA                                                       | TTERN: Be                   | eyond Imme                                                                 | diate Ripari                  | an Zone                  |                                   | ·····,                                   |                                                          |                                                                                                          |                                           |                                |                                                                                       |                                 |
|                                                                   |                             |                                                                            |                               | CO                       |                                   | ATEGORY                                  | SRADE or S                                               | SCORE                                                                                                    |                                           |                                |                                                                                       | P                               |
|                                                                   |                             | Optimal                                                                    |                               |                          | Suboptima                         |                                          |                                                          | arginal                                                                                                  |                                           | Poor                           |                                                                                       | e                               |
|                                                                   |                             | bed, consistir<br>live prairie, a<br>wellands.                             |                               |                          | ent pasture<br>and swamp<br>crops |                                          | pasture; s<br>areas may                                  | w crops and<br>some wooded<br>be present bu                                                              |                                           | Mainly row c                   | торь                                                                                  | 1:<br>R<br>N                    |
| O                                                                 | 40                          |                                                                            |                               |                          | <u> </u>                          |                                          |                                                          | ted patches                                                                                              | ļ                                         |                                |                                                                                       |                                 |
| Grade (Left)                                                      | 10<br>10                    | 9                                                                          | 8                             | 7                        | 6                                 | 5                                        | 4                                                        | 3                                                                                                        | 2                                         | $\frac{1}{1}$                  | 0                                                                                     | 1                               |
| Grade (Right)                                                     | IV                          | 1 3                                                                        | l0                            | L/                       | <u> </u>                          | 1 3                                      | 4                                                        | <u> </u>                                                                                                 | <u> </u>                                  | <u> </u>                       | Avg.Score                                                                             | 2                               |
| RIPARIAN ZON                                                      |                             | AND CONT                                                                   | INI IITY.                     |                          |                                   |                                          |                                                          |                                                                                                          |                                           |                                | Avg.50016                                                                             |                                 |
|                                                                   | <u></u>                     |                                                                            |                               |                          |                                   |                                          | ·                                                        |                                                                                                          |                                           |                                |                                                                                       |                                 |
|                                                                   |                             | ·····                                                                      |                               | CO                       | VDITION C                         | ATEGORY                                  | GRADE or S                                               | SCORE                                                                                                    |                                           |                                |                                                                                       | в                               |
| 6a. Riparian                                                      |                             | Optimal                                                                    |                               | T                        | Suboptima                         |                                          |                                                          | arginal                                                                                                  | I                                         | Poor                           |                                                                                       | a                               |
| Zone Width                                                        |                             | parian zone >1                                                             |                               |                          | rian zone 12-                     | 18 meters (1/2-                          | Width of rip                                             | anan zone 6-12                                                                                           |                                           |                                | meters (natural                                                                       | 10                              |
| (from stream<br>edge to field)                                    |                             | tihs with frees,<br>human activiti<br>impacted zoni                        | es have not                   |                          |                                   | rees, shrubs, or<br>have minimally<br>e. | channel wi                                               | 1/3-1/2 active<br>dlh vegetated),<br>human activilies.                                                   | width), littl                             |                                | active channel<br>getation due to<br>ties.                                            | P<br>ei<br>R<br>U               |
| Grade (left)                                                      | 10                          | 9                                                                          | 8                             | 7                        | 6                                 | 5                                        | 4                                                        | 3                                                                                                        | 2                                         | 1                              | 0                                                                                     |                                 |
| Grade (Right)                                                     | 10                          | 9                                                                          | 8                             | 7                        | 6                                 | 5                                        | 4                                                        | 3                                                                                                        | 2                                         | 1                              | 0                                                                                     | 1                               |
|                                                                   |                             |                                                                            |                               | ********                 | ***                               |                                          |                                                          |                                                                                                          | L                                         |                                | Avg.Score                                                                             | 2                               |
|                                                                   |                             |                                                                            |                               | CO                       |                                   | ATEGORY                                  |                                                          |                                                                                                          |                                           |                                |                                                                                       | B                               |
| ar 51 -                                                           |                             | Optimal                                                                    |                               |                          | Suboptima                         |                                          |                                                          | arginal                                                                                                  |                                           | Poor                           |                                                                                       | e                               |
| 6b. Riparian<br>Zone<br>Vegetation<br>Protection/<br>Completeness | shrubs, prai<br>riparian zo | it density of ma<br>irie grasses, or<br>one infact or dis<br>cing/mowing m | marsh plants,<br>ruption from | young speci<br>frees beh |                                   |                                          | vegetation of<br>and sparse<br>shrub sp<br>frequent with | streambank<br>of mixed grasses<br>e young tree or<br>ecies; breaks<br>th some gullies<br>wery 50 meters. | coverage o<br>grasses, fo<br>density; bar | consisting mo<br>ew trees & sh | ank vegetation<br>ostly of pasture<br>inubs; low plant<br>irred with gulties<br>ngth. | 1<br>#<br>P<br>e<br>1<br>R<br># |
| Grade (Left)                                                      | 10                          | 9                                                                          | 8                             | 7                        | 6                                 | 5                                        | 4                                                        | 3                                                                                                        | 2                                         | 1                              | 0                                                                                     | 2                               |
| Grade (Right)                                                     | 10                          | 9                                                                          | 8                             | 7                        | 6                                 | 5                                        | 4                                                        | 3                                                                                                        | 2                                         | 1                              | 0                                                                                     | 2                               |
| · · · · · · · · · · · · · · · · · · ·                             |                             |                                                                            |                               |                          |                                   |                                          |                                                          |                                                                                                          |                                           |                                | Avg.Score                                                                             | 2                               |
|                                                                   |                             |                                                                            |                               |                          | <u></u>                           |                                          | Turnelland Co                                            | an a Nee Instance                                                                                        | - Total Can                               | ro/Tatol D                     | ossible Score                                                                         | 0,1875                          |

| ARIABLES | FLOW REGI            |                                                                                         | 05\10\2006 Highway 9                                                              | 04 Bridge                                                        |                                                                                  | SCORE SC     |
|----------|----------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------|
| 1        | TYPE                 | ME<br>Perennial                                                                         | Intermittent w/ Perennial Pools                                                   | Intermittent                                                     | Ephemeral                                                                        | KI           |
|          | Grade                | 10 9 8                                                                                  | 7 6 5                                                                             | 4 3                                                              | 2 1 0                                                                            | 4 20         |
|          | CONCALINAL           |                                                                                         |                                                                                   |                                                                  |                                                                                  | 4            |
| 2        | EPIFAUNAL            | SUBSTRATE/AVAILABLE COVER<br>Optimal                                                    | Suboplimal                                                                        | Marginal                                                         | Poor                                                                             | 1            |
|          |                      | Within stream bed, greater than 50%                                                     | Wilhin stream bed, 30-50% coverage                                                | Within stream bed, 10-30%                                        | Less than 10% habital features                                                   | 1 U          |
|          |                      | coverage by stable habitat features,                                                    | by stable habitat features favorable                                              | coverage by stable habitat                                       | present; lack of habitat is obvious;<br>substrate unstable or lacking;           | N            |
|          |                      | favorable for stream faunal colonization<br>and/or fish/amphibian cover, Most habilat   | for stream faunal colonization and/or<br>fish/amphibian cover. Many habitat       | features lavorable for stream<br>faunal colonization and/or      | concrete lined channels. Habilat                                                 | 20<br>S/     |
|          |                      | features non transient. Features may                                                    | features not transient. (See Excellent                                            | fishfamphibian cover; habitat                                    | features and pools buried or lacking,                                            | Fo           |
|          |                      | include snags, submerged logs, undercut<br>banks, roots, cobble, rocks, persistent leaf | Category for habitat feature<br>components.)                                      | availability may be less than<br>desirable, substrate may be     | channel bollom may be flat                                                       | (P           |
|          |                      | packs, pools and glides, or other stable                                                |                                                                                   | frequently disturbed. (See                                       |                                                                                  | Ba           |
|          |                      | habitat at a stage to allow colonization                                                |                                                                                   | Excellent Category for habitat<br>(calure components.)           |                                                                                  | al.<br>El    |
|          |                      |                                                                                         |                                                                                   | testure components.)                                             |                                                                                  | P            |
|          |                      |                                                                                         |                                                                                   |                                                                  |                                                                                  | al           |
|          |                      |                                                                                         |                                                                                   |                                                                  | -                                                                                | AI           |
|          | Grade                | 10 9 8                                                                                  | 7 6 5                                                                             | 4 3                                                              | 2 1 0                                                                            | . 2          |
|          |                      |                                                                                         |                                                                                   |                                                                  |                                                                                  |              |
| 3        | STREAM BO            | OTTOM SUBSTRATE: Pool Substrate Ct<br>Optimal                                           |                                                                                   | Marchael                                                         | Poor                                                                             | - 1          |
|          | 1                    | Mixture of substrate materials, with gravel                                             | Suboptimal<br>Mixture of soft sand, mud, or clay;                                 | Marginal<br>All mud or clay or sand bottom;                      | Hard pan clay or bedrock; no root                                                | Bi           |
|          |                      | and firm sand prevalent; root mats and                                                  | mud may be dominant; some root                                                    | little or no root mat; no                                        | mat or submarged vogetation                                                      | al           |
|          |                      | submerged vegetation common.                                                            | mats and submerged vegatation                                                     | submerged vegetation.                                            |                                                                                  | R            |
|          |                      | 1                                                                                       | present.                                                                          |                                                                  |                                                                                  | pa<br>Pi     |
|          |                      |                                                                                         |                                                                                   |                                                                  |                                                                                  | al           |
|          | Grade                | 10 9 8                                                                                  | 7 6 5                                                                             | 4 3                                                              | 2 1 0                                                                            | 1            |
|          |                      |                                                                                         |                                                                                   | ·                                                                |                                                                                  |              |
| 4        | POOL VARIA           |                                                                                         |                                                                                   |                                                                  |                                                                                  | ] [          |
|          |                      | Optimal<br>Even mix of large-shallow, large-deep.                                       | Suboptimal<br>Majority of pools large-deep; very                                  | Marginal<br>Shallow pools much more                              | Poor<br>Majority of pools small-shallow or                                       | В            |
|          |                      | small-shallow, small-deep pools present                                                 | few shallow.                                                                      | prevalent than deep pools                                        | pools absent                                                                     | al           |
|          |                      |                                                                                         |                                                                                   |                                                                  |                                                                                  | R            |
|          | ſ                    |                                                                                         |                                                                                   |                                                                  |                                                                                  | pi           |
|          |                      |                                                                                         |                                                                                   |                                                                  |                                                                                  | P.           |
|          | Grade                | 10 9 8                                                                                  | 7 6 5                                                                             | 4 3                                                              | 2 1 0                                                                            | +            |
| ţ        |                      | DEPOSITION/SCOURING                                                                     |                                                                                   |                                                                  |                                                                                  | '            |
|          |                      | Optimal                                                                                 | Suboptimat                                                                        | Marginal                                                         | Poor                                                                             | ]            |
|          |                      | <5% of channel bottom affected by scour or<br>deposition                                | 5-30% affected by scour or deposition,<br>Scour at constrictions and weite grades | 30-50% affected by scour or<br>deposition. Deposits and scour at | More than 50% of the bottom in a state<br>of Rux or change nearly yearlong. Pool |              |
|          |                      |                                                                                         | steepen. Some deposition in pools                                                 | obstructions, constructions and                                  | minimal or absent due to heavy                                                   | R            |
|          |                      |                                                                                         |                                                                                   | bends. Some filing of pools.                                     | deposition or excessive scouring.                                                | p            |
|          |                      |                                                                                         |                                                                                   |                                                                  |                                                                                  | P            |
|          |                      | 10 9 8                                                                                  |                                                                                   |                                                                  | 2 1 0                                                                            | al al        |
|          | Grade                | 10 9 8                                                                                  | 7 6 5                                                                             | 4 3                                                              |                                                                                  |              |
| f        | 5 CHANNEL F          | LOW STATUS                                                                              |                                                                                   |                                                                  |                                                                                  |              |
|          |                      | Optimal                                                                                 | Suboptimal                                                                        | Marginal                                                         | Poor                                                                             | 1            |
|          |                      | Water reaches the base of both lower<br>banks; <5% of channel substrate is              | Water fills >75% of the channel; or<br><25% of channel substrate is               | Water fills 25-75% of the<br>available channel and/or tiffle     | Very little water in the channel and<br>mostly present in standing pools; or     |              |
|          |                      | exposed                                                                                 | exposed                                                                           | substrates are mostly exposed                                    | stream is dry                                                                    | a            |
|          |                      |                                                                                         |                                                                                   |                                                                  |                                                                                  | R            |
|          | 1                    | ***                                                                                     |                                                                                   |                                                                  | · · · ·                                                                          | p            |
|          | Cond                 |                                                                                         | <u> </u>                                                                          |                                                                  | 2 1 1 1 0                                                                        | P            |
| -        | Grade<br>7 CHANNEL A | 10 9 8<br>I TERATION                                                                    | 7 6 5                                                                             | 4 3                                                              | 2 1 0                                                                            | <sup>4</sup> |
|          | 1                    | Optimal                                                                                 | Suboptimal                                                                        | Marginal                                                         | Poor                                                                             |              |
|          |                      | Channelization, alteration, or dredging                                                 | Some alteration or channelization                                                 | Alteration or channelization                                     | Banks shored with gabion, riprap, o                                              |              |
|          |                      | absent or minimal; normal and stable<br>stream meander pattern. Alteration by           | present, usually adjacent to<br>structures, (such as bridge                       | may be extensive;<br>embankments (including spoil                | concrete, Concrete or riprap lined<br>channels, Instream habitat                 | N<br>D       |
|          | 1                    | stormwater inputs absent or minimal                                                     | abutments or culverts); evidence of                                               | piles) or shoring structures                                     | significantly altered by stormwater o                                            | н<br>12      |
|          |                      |                                                                                         | past alteration, (I.e., channelization)                                           | present on both banks; normal                                    |                                                                                  | Ś            |
|          |                      | 1                                                                                       | may be present, but stream pattern<br>and stability have recovered; recent        | stable stream meander pattern<br>has not recovered. Alteration   | sugam reach allered,                                                             | F            |
|          |                      |                                                                                         |                                                                                   | from stormwater inputs may be                                    |                                                                                  | (1           |
|          |                      |                                                                                         | alteration is not present. Minor                                                  |                                                                  |                                                                                  |              |
|          |                      |                                                                                         | alteration from stormwater or other                                               | extensive, 40-80% of stream                                      |                                                                                  |              |
|          |                      |                                                                                         |                                                                                   | extensive, 40-80% of stream reach altered.                       |                                                                                  | e            |
|          |                      |                                                                                         | alteration from stormwater or other                                               |                                                                  |                                                                                  |              |
|          |                      |                                                                                         | alteration from stormwater or other                                               |                                                                  |                                                                                  | eR           |
|          | Grade                | 10 9 8                                                                                  | alteration from stormwater or other                                               |                                                                  | 2 1 0                                                                            | e<br>R<br>P  |
|          | Grade                |                                                                                         | alteration from stormwater of other<br>inputs.                                    | reach altered.                                                   | 2 1 0                                                                            | e<br>R<br>P  |

· ·

| D         9         8         7         6         5         4         3         2         1         0           DRE EACH BANKS)           Design of mining (5% of bank<br>beer or mining (5% of bank<br>or dimando) bends OK); no<br>episod roots; no recent the falls:<br>waterline, severe roots on tobark<br>of monoto bends OK); no<br>exposed roots; no recent the falls:<br>waterline, severe roots may beade over.         Marginal<br>waterline, severe roots on tobark<br>waterline, severe roots may beade over.         Unstable: the point<br>waterline, severe roots may beade<br>on monoto bends OK); no<br>episod roots; no recent the falls:<br>waterline in more nails places; recent<br>waterline, severely<br>waterline in more nails places; recent<br>waterline in evores and fine on<br>hank undercalling; recently<br>exposed in evores and fine one<br>hank undercalling; recently<br>potential during floods         Poor           D         9         8         7         5         4         3         2         1         0           D         9         8         7         5         4         3         2         1         0           D         9         8         7         5         4         3         2         1         0           D         9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Oplimal         Suboptimal         Madgrafial         Poor           able; evidence of erosion or bank<br>bable; oridinant; (<5% of bank<br>perennial vegetation to waterline;<br>source of monotory bank<br>perennial vegetation to waterline;<br>source of monotory bank<br>sposed roots; no recent tee falls:         Moderately stable; infrequent, small<br>areas of erosion and/or bank<br>waterline in most places; recently<br>exposed roots; no recent tee falls:         Unstable; source or soin<br>micro resion and/or bank<br>waterline in most places; recently<br>exposed roots; no recent tee falls:         Unstable; source or soin<br>monotor resion and/or bank<br>waterline in most places; recently<br>exposed ree roots and for root<br>hairs common; high erosion<br>potential during floods         Unstable; source or soin<br>monotor resion and/or severely<br>undercut trees common; many<br>eroded mera; 'rwa' races; frequent<br>along straight sections and<br>bank undercutting; recently<br>exposed ree roots and fine root<br>hairs common; high erosion<br>potential during floods         Image: source or soin<br>bank has erosional scars.           0         9         8         7         6         5         4         3         2         1         0           0         9         8         7         6         5         4         3         2         1         0           0         9         8         7         6         5         4         3         2         1         0           0         9         8         7         6         5         4         3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Oplimal         Suboptimal         Madgrafial         Poor           able; evidence of erosion or bank<br>bable; oridinant; (<5% of bank<br>perennial vegetation to waterline;<br>source of monotory bank<br>perennial vegetation to waterline;<br>source of monotory bank<br>sposed roots; no recent tee falls:         Moderately stable; infrequent, small<br>areas of erosion and/or bank<br>waterline in most places; recently<br>exposed roots; no recent tee falls:         Unstable; source or soin<br>micro resion and/or bank<br>waterline in most places; recently<br>exposed roots; no recent tee falls:         Unstable; source or soin<br>monotor resion and/or bank<br>waterline in most places; recently<br>exposed ree roots and for root<br>hairs common; high erosion<br>potential during floods         Unstable; source or soin<br>monotor resion and/or severely<br>undercut trees common; many<br>eroded mera; 'rwa' races; frequent<br>along straight sections and<br>bank undercutting; recently<br>exposed ree roots and fine root<br>hairs common; high erosion<br>potential during floods         Image: source or soin<br>bank has erosional scars.           0         9         8         7         6         5         4         3         2         1         0           0         9         8         7         6         5         4         3         2         1         0           0         9         8         7         6         5         4         3         2         1         0           0         9         8         7         6         5         4         3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| D       9       8       7       6       5       4       3       2       1       0         Avg.Score         CTION (SCORE EACH BANK)         Optimal       Marginal       Poor         Colspan="4">Colspan="4">Colspan="4">Colspan="4">Avg.Score         Optimal       Avg.Score         Optimal       Poor         Covered by native vegetation, but<br>covered by native vegetation covered by vegetation<br>covered by native vegetation covered by vegetation<br>covered by native vegetation covered by vegetation<br>covered by native vegetation covered by native by n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Avg.Score         Avg.Score         Optimal       Marginal       Poor         Oof the streambank surfaces       Suboptimal       Poor         Suboptimal       Marginal       Poor         Suboptimal       Marginal       Poor         Suboptimal       Marginal       Poor         Suboptimal       Surfaces covered by vegetation, but covered by vegetation, but covered by vegetation of streambank vegetation or closely cropped vegetation.       Surfaces covered by vegetation of streambank vegetation or closely cropped vegetation.         Notice streambank surfaces       Surfaces covered by vegetation.         Notice streambank surfaces       Surfaces covered by vegetation.         Notice streambank vegetation.       Surfaces covered by vegetation.       Surfaces covered by vegetation.         Notice streambank vegetation.       Surfaces covered by vegetation.       Surfaces covered by vegetation.         Notice streambank vegetation.       Surfaces covered by vegetation.       Surfaces covered by vegetation.         Surfaces covered by vegetation.       Surfac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Optimal         Suboptimal         Marginal         Poor           190% of the streambank surfaces         70-90% of the streambank surfaces         50-70% of the streambank surfaces         Sufface Streambank surfaces         Surfaces covered by vegletation. It is streambank surfaces covered by vegletation. It is up the streambank surfaces         Less than 50% of the streambank surfaces         Surfaces covered by vegletation. It is surfaces covered by vegletation. It is surfaces covered by vegletation. It is very light vegletation of streambank vegletation and streambank vegletation or one closely cropped vegletation closely cropped vegletation. It is very light vegletation and streambank vegletation are streambank vegletation or one closely cropped vegletation closely cropped vegle                                                                                                                                                                                                                                                                        |
| Optimal         Suboptimal         Marginal         Poor           190% of the streambank surfaces         70-90% of the streambank surfaces         50-70% of the streambank surfaces         Sufface Streambank surfaces         Surfaces covered by vegletation. It is streambank surfaces covered by vegletation. It is up the streambank surfaces         Less than 50% of the streambank surfaces         Surfaces covered by vegletation. It is surfaces covered by vegletation. It is surfaces covered by vegletation. It is very light vegletation of streambank vegletation and streambank vegletation or one closely cropped vegletation closely cropped vegletation. It is very light vegletation and streambank vegletation are streambank vegletation or one closely cropped vegletation closely cropped vegle                                                                                                                                                                                                                                                                        |
| D     9     8     7     6     5     4     3     2     1     0       Avg_Score         DRE EACH BANK)       Optimal     Suboptimal     Marginal     Poor       riparian zone >18 meters; human activities have impacted zone     Width of riparian zone 6-12     Width of riparian zone 6-12       Night of riparian zone 12-18 meters; human activities have impacted zone       meters; human activities have impacted zone a great deal.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Avg.Score           ORE EACH BANK)           Oplimal         Marginal           Poor           riparian zone > 18 meters; human activities nave impacted zone           mis, or crops) have not impacted only minimatly).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Optimal         Suboptimal         Marginal         Poor           riparian zone > 18 meters; human         Width of riparian zone 12-18 meters;         Width of riparian zone 6-12         Width of riparian zone 6-12 <td< td=""></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Optimal         Suboptimal         Marginal         Poor           riparian zone > 18 meters; human         Width of riparian zone 12-18 meters;         Width of riparian zone 6-12         Width of riparian zone 6-12 <td< td=""></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0 9 8 7 6 5 4 3 2 1 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0 9 8 7 6 5 4 3 2 1 0<br>Avg.Score                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ONDITION (SCORE EACH BANK)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Optimal Suboptimal Marginal Poor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| tum (dbh>3 inches) present, wih Tree stratum (dbh>3 inches) present.<br>s may include: sapling, shub,<br>s may include: sapling, shub,<br>tereas and veck devis, Scene al tow he high here are present.<br>haves nare present. Score at low and local tayers are<br>t additional lorest layers are present.<br>t additional lorest mere shub town and is 1<br>additional lorest are present.<br>Score at low end if ≤1<br>additional layers are present |
| 0 9 8 7 6 5 4 3 2 1 0 Below                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| areas along each stream bank into Condition Categories and Condition Scores using the above descriptors<br>footage for each by measuring or estimating length and width. Land Use GIS maps may be used for this.<br>In Area (or for field purposes, enter length and width) and Score for each riparian category in the blocks below.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Optimal         Suboptimal         Marginal         Poor           an Area         25         75         100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <u>3</u> <u>2</u><br>0 0 0.75 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| an Area 60 40 100 5 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0 3 1.2 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| SubCl=(%RA*Scores*0.01)<br>RI Bank Ct> 2.25 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Calculation of Function Capacity Index = Total Score/Total Possible Score().19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

| VARIABLES                                                                                                                          | CTIONS                                                                             |                                                                                                                                        |                                                                                                       | 05\05\200                                                                                      | 6                                                                                                                                                                               | Highway 3                                                                                                                                                       | 8 Bridge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                   |                                                                     |                                                                                                          |                                                                              |                                                                    | SCORE | Reference<br>Source                                                                                                         |
|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------|
| FLOW REGIME                                                                                                                        | <u>±:</u>                                                                          |                                                                                                                                        |                                                                                                       |                                                                                                |                                                                                                                                                                                 |                                                                                                                                                                 | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                   |                                                                     |                                                                                                          |                                                                              |                                                                    |       | KDWP 2000                                                                                                                   |
| TYPE                                                                                                                               |                                                                                    | Perennial                                                                                                                              |                                                                                                       | Intermitt                                                                                      | ent w/ Per                                                                                                                                                                      | ennial Pools                                                                                                                                                    | Interr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nittent                                                                                                                                                                                                                                                           | · .                                                                 | Ephe                                                                                                     | meral                                                                        |                                                                    | Į     | Kansas                                                                                                                      |
| Grade                                                                                                                              | 10                                                                                 | 9                                                                                                                                      | 8                                                                                                     | 7                                                                                              | 6                                                                                                                                                                               | 5                                                                                                                                                               | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3                                                                                                                                                                                                                                                                 | 2                                                                   |                                                                                                          | I                                                                            | 0                                                                  | 4     | Subjective                                                                                                                  |
| CHANNEL CO                                                                                                                         | NDITION: M                                                                         | leasureme                                                                                                                              | ent or Obsen                                                                                          | vation of St                                                                                   | ream Char                                                                                                                                                                       | nnel Condilio                                                                                                                                                   | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u></u>                                                                                                                                                                                                                                                           |                                                                     |                                                                                                          |                                                                              |                                                                    | 1     | 1                                                                                                                           |
|                                                                                                                                    |                                                                                    |                                                                                                                                        |                                                                                                       | CON                                                                                            | IDITION (                                                                                                                                                                       | CATEGORY (                                                                                                                                                      | GRADE or S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CORE                                                                                                                                                                                                                                                              |                                                                     |                                                                                                          |                                                                              |                                                                    | 1     | Barbour, 1999                                                                                                               |
|                                                                                                                                    |                                                                                    | Optimal                                                                                                                                |                                                                                                       |                                                                                                | Suboptim                                                                                                                                                                        |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ginal                                                                                                                                                                                                                                                             |                                                                     |                                                                                                          | or                                                                           |                                                                    | ]     | EPA RBA pag                                                                                                                 |
|                                                                                                                                    |                                                                                    |                                                                                                                                        | tructures or<br>No evidence                                                                           |                                                                                                |                                                                                                                                                                                 | on (usually in<br>ast channel                                                                                                                                   | Altered char                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nnel; 40-80%<br>channelized                                                                                                                                                                                                                                       |                                                                     |                                                                                                          |                                                                              | nculting or                                                        | [     | 5-21; Newton                                                                                                                |
|                                                                                                                                    |                                                                                    |                                                                                                                                        | essive lateral                                                                                        |                                                                                                |                                                                                                                                                                                 | h significant                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ed, Excess                                                                                                                                                                                                                                                        |                                                                     |                                                                                                          |                                                                              | ch riprap o<br>on,dikes or                                         |       | 1998 USDAJ<br>NRCS SVAP                                                                                                     |
| 2a.Channel<br>Condition/Alter                                                                                                      | cutting.                                                                           | Normal free                                                                                                                            | quency of                                                                                             | recovery o                                                                                     | of channel b                                                                                                                                                                    | oed and banks                                                                                                                                                   | aggradati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | on; braided                                                                                                                                                                                                                                                       | levee                                                               | s prever                                                                                                 | l access                                                                     |                                                                    |       | page 7                                                                                                                      |
| ation (natural,                                                                                                                    | I HARDIORIC                                                                        |                                                                                                                                        | on between                                                                                            |                                                                                                |                                                                                                                                                                                 | cy of overbank                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ih excessive                                                                                                                                                                                                                                                      |                                                                     | flood                                                                                                    | plain.                                                                       |                                                                    |       | Page                                                                                                                        |
| altered, or                                                                                                                        | chant                                                                              | nel and floo                                                                                                                           | opiain.                                                                                               | 101                                                                                            | ws onto floo                                                                                                                                                                    | oopiain.                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | of overbank<br>ne floodplain.                                                                                                                                                                                                                                     | )                                                                   |                                                                                                          |                                                                              |                                                                    |       | 1                                                                                                                           |
| downcutting)                                                                                                                       |                                                                                    |                                                                                                                                        |                                                                                                       |                                                                                                |                                                                                                                                                                                 |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ncision.dikes                                                                                                                                                                                                                                                     |                                                                     |                                                                                                          |                                                                              |                                                                    |       | 1                                                                                                                           |
|                                                                                                                                    |                                                                                    |                                                                                                                                        |                                                                                                       |                                                                                                |                                                                                                                                                                                 |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | s restrict                                                                                                                                                                                                                                                        |                                                                     |                                                                                                          |                                                                              |                                                                    |       |                                                                                                                             |
|                                                                                                                                    |                                                                                    |                                                                                                                                        |                                                                                                       |                                                                                                |                                                                                                                                                                                 |                                                                                                                                                                 | flood                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | lplain.                                                                                                                                                                                                                                                           |                                                                     |                                                                                                          |                                                                              |                                                                    |       | [                                                                                                                           |
|                                                                                                                                    | ]                                                                                  |                                                                                                                                        |                                                                                                       |                                                                                                |                                                                                                                                                                                 |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                   |                                                                     |                                                                                                          |                                                                              |                                                                    |       |                                                                                                                             |
|                                                                                                                                    |                                                                                    |                                                                                                                                        |                                                                                                       |                                                                                                |                                                                                                                                                                                 |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                   | ĺ                                                                   |                                                                                                          |                                                                              |                                                                    | 1     |                                                                                                                             |
| Grade                                                                                                                              | 10                                                                                 | 9                                                                                                                                      | 8                                                                                                     | 7                                                                                              | 6                                                                                                                                                                               | 5                                                                                                                                                               | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3                                                                                                                                                                                                                                                                 | 2                                                                   |                                                                                                          | 1                                                                            | 0                                                                  | 0     | 7                                                                                                                           |
|                                                                                                                                    |                                                                                    |                                                                                                                                        |                                                                                                       | ·I                                                                                             | J                                                                                                                                                                               |                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | L                                                                                                                                                                                                                                                                 | ·~                                                                  |                                                                                                          |                                                                              |                                                                    |       | 7                                                                                                                           |
|                                                                                                                                    |                                                                                    |                                                                                                                                        |                                                                                                       | CON                                                                                            | IDITION C                                                                                                                                                                       | CATEGORY O                                                                                                                                                      | RADE or S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CORE                                                                                                                                                                                                                                                              |                                                                     |                                                                                                          |                                                                              |                                                                    | ]     | w/ assistance                                                                                                               |
| 2b.Channel                                                                                                                         |                                                                                    | Optimal                                                                                                                                |                                                                                                       |                                                                                                | Suboptin                                                                                                                                                                        |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ginal                                                                                                                                                                                                                                                             |                                                                     |                                                                                                          | 100                                                                          |                                                                    |       | and input from                                                                                                              |
| Capacity to                                                                                                                        |                                                                                    |                                                                                                                                        | w Frequency<br>overflow from                                                                          |                                                                                                |                                                                                                                                                                                 | low Frequency k overflow from                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Capacity to<br>ency Ratio is                                                                                                                                                                                                                                      |                                                                     |                                                                                                          |                                                                              | Frequency<br>erflow from                                           |       | Dr. Mike                                                                                                                    |
| Flow                                                                                                                               |                                                                                    |                                                                                                                                        | a 1.25 to 2.5                                                                                         |                                                                                                |                                                                                                                                                                                 | e frequent that                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ank overflow                                                                                                                                                                                                                                                      |                                                                     |                                                                                                          |                                                                              | quent than                                                         |       | Harvey and S<br>Travant                                                                                                     |
| Frequency<br>Ratio (for 2-                                                                                                         | ye                                                                                 | ear frequenc                                                                                                                           |                                                                                                       |                                                                                                |                                                                                                                                                                                 | less frequent                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | events are                                                                                                                                                                                                                                                        | every ha                                                            |                                                                                                          |                                                                              | quent than                                                         |       | 1. avant                                                                                                                    |
| year peak                                                                                                                          |                                                                                    | 0.75-1.25                                                                                                                              |                                                                                                       | tha                                                                                            | n every 2.5<br><0.75 or >1                                                                                                                                                      |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | quent than<br>ear or less                                                                                                                                                                                                                                         |                                                                     |                                                                                                          | 0 years.<br>I or >2                                                          |                                                                    |       |                                                                                                                             |
| flow)                                                                                                                              |                                                                                    |                                                                                                                                        |                                                                                                       |                                                                                                | -0.75 07 2                                                                                                                                                                      | 1,20                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | han every 5                                                                                                                                                                                                                                                       |                                                                     | ~0.2                                                                                                     | 10172                                                                        |                                                                    |       |                                                                                                                             |
|                                                                                                                                    |                                                                                    |                                                                                                                                        |                                                                                                       |                                                                                                |                                                                                                                                                                                 |                                                                                                                                                                 | ye                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ars,                                                                                                                                                                                                                                                              |                                                                     |                                                                                                          |                                                                              |                                                                    |       |                                                                                                                             |
|                                                                                                                                    |                                                                                    |                                                                                                                                        |                                                                                                       | 1                                                                                              |                                                                                                                                                                                 |                                                                                                                                                                 | < 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | or >1.5                                                                                                                                                                                                                                                           |                                                                     |                                                                                                          |                                                                              |                                                                    |       |                                                                                                                             |
| Grade                                                                                                                              | 10                                                                                 | 9                                                                                                                                      | 8                                                                                                     | 7                                                                                              | 6                                                                                                                                                                               | 5                                                                                                                                                               | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3                                                                                                                                                                                                                                                                 | 2                                                                   |                                                                                                          | 1                                                                            | 0                                                                  | 0     | 2                                                                                                                           |
|                                                                                                                                    |                                                                                    | ·····                                                                                                                                  |                                                                                                       |                                                                                                | DITION                                                                                                                                                                          | ATEOODY                                                                                                                                                         | 00405                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CODE                                                                                                                                                                                                                                                              |                                                                     |                                                                                                          |                                                                              |                                                                    | _     | 1                                                                                                                           |
|                                                                                                                                    |                                                                                    | Optimal                                                                                                                                |                                                                                                       |                                                                                                | Suboptin                                                                                                                                                                        | CATEGORY (                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | pinal                                                                                                                                                                                                                                                             | T                                                                   | D                                                                                                        | 100                                                                          |                                                                    | -     | Newton, 1998                                                                                                                |
|                                                                                                                                    | Banks stabl                                                                        |                                                                                                                                        | e of erosion o                                                                                        | Moderate                                                                                       |                                                                                                                                                                                 | nfrequent, smal                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ly unstable;                                                                                                                                                                                                                                                      | Unstable                                                            |                                                                                                          |                                                                              | egetation at                                                       |       | SVAP page                                                                                                                   |
|                                                                                                                                    | bank failure                                                                       | absent or r                                                                                                                            | minimal; (<5%                                                                                         | areas of e                                                                                     | rosion most                                                                                                                                                                     | lly healed over.                                                                                                                                                | perennial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | regetation to                                                                                                                                                                                                                                                     | waterli                                                             | ne; seve                                                                                                 | re erosic                                                                    | on of both                                                         | 1     | 10; Barbour,                                                                                                                |
| 2c.Channel<br>Bank Stability                                                                                                       |                                                                                    | c affected), p                                                                                                                         | perennial<br>ie; no raw or                                                                            |                                                                                                |                                                                                                                                                                                 | ch has areas c<br>nd/or bank                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | parse (mainly<br>r stripped by                                                                                                                                                                                                                                    |                                                                     |                                                                                                          |                                                                              | tree roots<br>or severely                                          |       | al., 1999 EP.                                                                                                               |
| (score each                                                                                                                        |                                                                                    |                                                                                                                                        | e erosion on                                                                                          |                                                                                                |                                                                                                                                                                                 | ial vegetation t                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | sion), bank                                                                                                                                                                                                                                                       |                                                                     |                                                                                                          |                                                                              | nany eroder                                                        | d     | RBA page 5-                                                                                                                 |
| bank, left or                                                                                                                      |                                                                                    |                                                                                                                                        | nds O.K.); no                                                                                         | waterline                                                                                      | in most pla                                                                                                                                                                     | aces; recently                                                                                                                                                  | held by h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | hard points                                                                                                                                                                                                                                                       |                                                                     |                                                                                                          |                                                                              | ient along                                                         |       | 26; USACE,<br>Norfolk                                                                                                       |
| right facing                                                                                                                       | recently ex                                                                        | xposed root<br>tree falls;                                                                                                             | ts; no recent                                                                                         | exposed t                                                                                      | ree rools ra                                                                                                                                                                    | are but present                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | k outcrops)<br>ded back                                                                                                                                                                                                                                           |                                                                     |                                                                                                          |                                                                              | ds; obvious<br>of bank has                                         |       | District, 2004                                                                                                              |
| downstream)                                                                                                                        |                                                                                    | 000 1000,                                                                                                                              |                                                                                                       | 1                                                                                              |                                                                                                                                                                                 |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | : 30-60% of                                                                                                                                                                                                                                                       | Danicalor                                                           |                                                                                                          | al scars                                                                     |                                                                    | 1     |                                                                                                                             |
|                                                                                                                                    |                                                                                    |                                                                                                                                        |                                                                                                       | 1                                                                                              |                                                                                                                                                                                 |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ch has areas                                                                                                                                                                                                                                                      |                                                                     |                                                                                                          |                                                                              |                                                                    |       |                                                                                                                             |
|                                                                                                                                    |                                                                                    |                                                                                                                                        |                                                                                                       | 1                                                                                              |                                                                                                                                                                                 |                                                                                                                                                                 | of erosio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | n and bank                                                                                                                                                                                                                                                        |                                                                     |                                                                                                          |                                                                              |                                                                    | }     |                                                                                                                             |
|                                                                                                                                    |                                                                                    |                                                                                                                                        |                                                                                                       |                                                                                                |                                                                                                                                                                                 |                                                                                                                                                                 | undercutti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | na: meanth                                                                                                                                                                                                                                                        | 1                                                                   |                                                                                                          |                                                                              |                                                                    |       |                                                                                                                             |
|                                                                                                                                    |                                                                                    |                                                                                                                                        |                                                                                                       |                                                                                                |                                                                                                                                                                                 |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ng: recently<br>ee roots and                                                                                                                                                                                                                                      |                                                                     |                                                                                                          |                                                                              |                                                                    |       |                                                                                                                             |
| Orada II att                                                                                                                       |                                                                                    |                                                                                                                                        |                                                                                                       |                                                                                                |                                                                                                                                                                                 |                                                                                                                                                                 | exposed tr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ee roots and<br>irs common:                                                                                                                                                                                                                                       | ļ                                                                   |                                                                                                          |                                                                              |                                                                    |       |                                                                                                                             |
| Grade (Left)                                                                                                                       | 10                                                                                 | 9                                                                                                                                      | 8                                                                                                     | 7                                                                                              | 6                                                                                                                                                                               | 5                                                                                                                                                               | exposed tr<br>fine root ha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ee roots and<br>irs common:<br>3                                                                                                                                                                                                                                  | 2                                                                   |                                                                                                          | 1                                                                            | 0                                                                  |       |                                                                                                                             |
| Grade (Left)<br>Grade (Right)                                                                                                      | 10<br>10                                                                           | <u>9</u><br>9                                                                                                                          | 8<br>8                                                                                                | 777                                                                                            | 6                                                                                                                                                                               | 5                                                                                                                                                               | exposed tr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ee roots and<br>irs common:                                                                                                                                                                                                                                       | ļ                                                                   |                                                                                                          | 1                                                                            | 0                                                                  |       | 2                                                                                                                           |
| Grade (Right)                                                                                                                      | 10                                                                                 | 9                                                                                                                                      | 8                                                                                                     |                                                                                                |                                                                                                                                                                                 |                                                                                                                                                                 | exposed tr<br>fine root ha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ee roots and<br>irs common:<br>3                                                                                                                                                                                                                                  | 2                                                                   |                                                                                                          | 1                                                                            |                                                                    |       |                                                                                                                             |
|                                                                                                                                    | 10                                                                                 | 9                                                                                                                                      | 8                                                                                                     |                                                                                                |                                                                                                                                                                                 |                                                                                                                                                                 | exposed tr<br>fine root ha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ee roots and<br>irs common:<br>3                                                                                                                                                                                                                                  | 2                                                                   |                                                                                                          | 1                                                                            | 0                                                                  |       |                                                                                                                             |
| Grade (Right)                                                                                                                      | 10                                                                                 | 9                                                                                                                                      | 8                                                                                                     | 7                                                                                              | 6                                                                                                                                                                               | 5                                                                                                                                                               | exposed tr<br>fine root ba<br>4<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ee roots and<br>irs common:<br>3<br>3                                                                                                                                                                                                                             | 2                                                                   |                                                                                                          | 1                                                                            | 0                                                                  |       | 2                                                                                                                           |
| Grade (Right)<br>CHANNEL RO                                                                                                        | 10                                                                                 | 9<br>FACTORS                                                                                                                           | 8                                                                                                     | 7                                                                                              |                                                                                                                                                                                 | 5<br>CATEGORY                                                                                                                                                   | exposed to<br>fine root ha<br>4<br>4<br>6<br>GRADE or S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ee roots and<br>irs common:<br>3<br>3<br>3<br>6CORE                                                                                                                                                                                                               | 2                                                                   |                                                                                                          | 1                                                                            | 0                                                                  |       | 2<br>2<br>Barbour, 199                                                                                                      |
| Grade (Right)<br>CHANNEL RO<br>3a,Channel                                                                                          | UGHNESS I                                                                          | 9<br>FACTORS<br>Optimal                                                                                                                | 8                                                                                                     | 7<br>COI                                                                                       | 6<br>NDITION (<br>Suboplin                                                                                                                                                      | 5<br>CATEGORY                                                                                                                                                   | exposed tr<br>fine root ha<br>4<br>4<br>4<br>GRADE or S<br>Mar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ee roots and<br>irs common:<br>3<br>3<br>5<br>5<br>5<br>CORE<br>ginal                                                                                                                                                                                             | 2 2                                                                 | p                                                                                                        |                                                                              | 0<br>Avg.Score                                                     |       | 2<br>2<br>Barbour, 199<br>EPA RBA                                                                                           |
| Grade (Right)<br>CHANNEL RO<br>3a,Channel<br>Sinuosity                                                                             | 10<br>UGHNESS I                                                                    | 9<br>FACTORS<br>Optimal<br>n the stream<br>gth 2.5 to 4                                                                                | 8<br>n increase the<br>limes longer                                                                   | 7<br>COI<br>The bends<br>stream ler                                                            | 6<br>NDITION (<br>Suboptim<br>in the street<br>ogth 1.5 to 2                                                                                                                    | 5<br>CATEGORY<br>nal<br>am increase the<br>2.5 times longe                                                                                                      | exposed tr<br>fine cost ha<br>4<br>4<br>GRADE or 5<br>Mar<br>5 The bends<br>1 increase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ee roots and<br>irs common:<br>3<br>3<br>SCORE<br>ginal<br>in the stream<br>the stream                                                                                                                                                                            | 2<br>2<br>Channel<br>chann                                          | pi<br>straight;<br>elized fo                                                                             | 1<br>Dor<br>waterwa<br>r a long                                              | 0<br>Avg.Score<br>ay has beer<br>distance.                         |       | Barbour, 199<br>EPA RBA<br>Chapter 5 pa<br>5-25; KDWP                                                                       |
| Grade (Right)<br>CHANNEL RO<br>3a Channel<br>Sinuosity<br>(bends in low                                                            | UGHNESS I                                                                          | 9<br>FACTORS<br>Optimal<br>n the stream<br>glh 2.5 to 4<br>was streight                                                                | 8<br>nincrease the<br>limes longer<br>t. Channel                                                      | COI                                                                                            | 6<br>NDITION (<br>Suboptim<br>in the streat<br>ogth 1.5 to 2<br>as a straigh                                                                                                    | 5<br>CATEGORY<br>nal<br>am increase the<br>2.5 times longe<br>at line. Channe                                                                                   | exposed tr<br>fine root ha<br>4<br>4<br>GRADE or S<br>Mar<br>The bends<br>increase<br>increase<br>increase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ee roots and<br>irs common:<br>3<br>3<br>SCORE<br>ginal<br>in the stream<br>the stream<br>to 1.5 times                                                                                                                                                            | 2<br>2<br>Channel<br>chann                                          | pi<br>straight;<br>elized fo                                                                             | 1<br>Dor<br>waterwa<br>r a long                                              | 0<br>Avg.Score<br>ay has beer                                      |       | 2<br>Barbour, 199<br>EPA RBA<br>Chapter 5 pa                                                                                |
| Grade (Right)<br>CHANNEL RO<br>3a,Channel<br>Sinuosity                                                                             | UGHNESS I                                                                          | 9<br>FACTORS<br>Optimal<br>n the stream<br>glh 2.5 to 4<br>was streight                                                                | 8<br>n increase the<br>limes longer                                                                   | COI                                                                                            | 6<br>NDITION (<br>Suboptim<br>in the streat<br>ogth 1.5 to 2<br>as a straigh                                                                                                    | 5<br>CATEGORY<br>nal<br>am increase the<br>2.5 times longe                                                                                                      | GRADE or S<br>GRADE or S<br>Mar<br>The bends<br>increase<br>longer that                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ee roots and<br>irs common:<br>3<br>3<br>SCORE<br>ginal<br>in the stream<br>the stream                                                                                                                                                                            | 2<br>2<br>Channel<br>chann                                          | pi<br>straight;<br>elized fo                                                                             | 1<br>Dor<br>waterwa<br>r a long                                              | 0<br>Avg.Score<br>ay has beer<br>distance.                         |       | Barbour, 199<br>EPA RBA<br>Chapter 5 pa<br>5-25; KDWP                                                                       |
| Grade (Right)<br>CHANNEL RO<br>3a,Channel<br>Sinuosity<br>(bends in low<br>gradient                                                | UGHNESS I                                                                          | 9<br>FACTORS<br>Optimal<br>n the stream<br>glh 2.5 to 4<br>was streight                                                                | 8<br>nincrease the<br>limes longer<br>t. Channel                                                      | COI                                                                                            | 6<br>NDITION (<br>Suboptim<br>in the streat<br>ogth 1.5 to 2<br>as a straigh                                                                                                    | 5<br>CATEGORY<br>nal<br>am increase the<br>2.5 times longe<br>at line. Channe                                                                                   | GRADE or S<br>GRADE or S<br>Mar<br>The bends<br>increase<br>length 1 t<br>longer tha<br>straight lir<br>iength/vall/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ee roots and<br>ins. common:<br>3<br>3<br>3<br>SCORE<br>ginal<br>in the stream<br>the stream<br>to 1.5 times<br>an if it was a<br>e. Channel<br>ey length 1.0                                                                                                     | 2<br>2<br>Channel<br>chann<br>Channel                               | pi<br>straight;<br>elized fo                                                                             | 1<br>Dor<br>waterwa<br>r a long                                              | 0<br>Avg.Score<br>ay has beer<br>distance.                         |       | Barbour, 199<br>EPA RBA<br>Chapter 5 pa<br>5-25; KDWP                                                                       |
| Grade (Right)<br>CHANNEL RO<br>3a,Channel<br>Sinuosity<br>(bends in low<br>gradient                                                | UGHNESS I                                                                          | 9<br>FACTORS<br>Optimal<br>n the stream<br>glh 2.5 to 4<br>was streight                                                                | 8<br>nincrease the<br>limes longer<br>t. Channel                                                      | COI                                                                                            | 6<br>NDITION (<br>Suboptim<br>in the streat<br>ogth 1.5 to 2<br>as a straigh                                                                                                    | 5<br>CATEGORY<br>nal<br>am increase the<br>2.5 times longe<br>at line. Channe                                                                                   | GRADE or S<br>GRADE or S<br>Mar<br>The bends<br>increase<br>length 1 t<br>longer tha<br>straight lir<br>iength/vall/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ee roots and<br>irs. common:<br>3<br>3<br>SCORE<br>ginal<br>in the stream<br>the stream<br>to 1.5 times<br>an if it was a<br>te, Channel                                                                                                                          | 2<br>2<br>Channel<br>chann<br>Channel                               | pi<br>straight;<br>elized fo                                                                             | 1<br>Dor<br>waterwa<br>r a long                                              | 0<br>Avg.Score<br>ay has beer<br>distance.                         |       | Barbour, 199<br>EPA RBA<br>Chapter 5 pa<br>5-25; KDWP                                                                       |
| Grade (Right)<br>CHANNEL RO<br>3a,Channel<br>Sinuosity<br>(bends in low<br>gradient                                                | UGHNESS I                                                                          | 9<br>FACTORS<br>Optimal<br>n the stream<br>glh 2.5 to 4<br>was streight                                                                | 8<br>nincrease the<br>limes longer<br>t. Channel                                                      | COI                                                                                            | 6<br>NDITION (<br>Suboptim<br>in the streat<br>ogth 1.5 to 2<br>as a straigh                                                                                                    | 5<br>CATEGORY<br>nal<br>am increase the<br>2.5 times longe<br>at line. Channe                                                                                   | GRADE or S<br>GRADE or S<br>Mar<br>The bends<br>increase<br>length 1 t<br>longer tha<br>straight lir<br>iength/vall/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ee roots and<br>ins. common:<br>3<br>3<br>3<br>SCORE<br>ginal<br>in the stream<br>the stream<br>to 1.5 times<br>an if it was a<br>e. Channel<br>ey length 1.0                                                                                                     | 2<br>2<br>Channel<br>chann<br>Channel                               | p,<br>straight,<br>elized fo<br>al length/                                                               | 1<br>Dor<br>waterwa<br>r a long                                              | 0<br>Avg.Score<br>ay has beer<br>distance.                         |       | Barbour, 199<br>EPA RBA<br>Chapter 5 pa<br>5-25; KDWP                                                                       |
| Grade (Right)<br>CHANNEL RO<br>3a.Channel<br>Sinuosity<br>(bends in low<br>gradient<br>stream)                                     | 10<br>UGHNESS I<br>The bends in<br>stream leng<br>than if it v<br>length/vall      | 9<br>FACTORS<br>Optimal<br>n the stream<br>glh 2.5 to 4<br>was streight<br>ley length a                                                | 8<br>n increase the<br>limes longer<br>t. Channel<br>at least >1.5.                                   | COI<br>The bends<br>Stream ler<br>than if it w<br>length                                       | NDITION (<br>Suboplin<br>in the stree<br>gight -5 to 5<br>as a straigh<br>valley leng                                                                                           | 5<br>CATEGORY 1<br>nal<br>am increase the<br>2.5 times longe<br>1t line. Channu<br>th 1.2 to 1.5<br>5                                                           | exposed tr<br>fine cool ha<br>4<br>4<br>4<br>6<br>6<br>7<br>7<br>7<br>7<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ee roots and<br>in common:<br>3<br>3<br>3<br>3<br>SCORE<br>ginal<br>in the stream<br>o 1.5 times<br>an if it was a<br>the channel<br>ey length 1.0<br>1.2.<br>3                                                                                                   | 2<br>2<br>Channel<br>chanr<br>Chann                                 | p,<br>straight,<br>elized fo<br>al length/                                                               | 1<br>Dor<br>waterwa<br>r a long<br>valley le                                 | 0<br>Avg.Score<br>ay has been<br>distance.<br>ingth_<1.0           |       | 2<br>2<br>EPA RBA<br>Chapter 5 pr<br>5-25; KDWP<br>1996                                                                     |
| Grade (Right)<br>CHANNEL RO<br>3a.Channel<br>Sinuosity<br>(bends in low<br>gradient<br>stream)                                     | 10<br>UGHNESS I<br>The bends in<br>stream leng<br>than if it v<br>length/vall      | 9<br>FACTORS<br>Optimal<br>n the stream<br>glh 2.5 to 4<br>was straight<br>ley length a<br>9                                           | 8<br>n increase the<br>limes longer<br>t. Channel<br>at least >1.5.                                   | COI<br>The bends<br>Stream ler<br>than if it w<br>length                                       | NDITION (<br>Suboplin<br>in the stree<br>goth 1.5 to 2<br>as a straigh<br>'valley leng<br>b<br>DITION (                                                                         | CATEGORY<br>mal<br>am increase the<br>2.5 times tonge<br>1 tine. Chann<br>th 1.2 to 1.5<br>5<br>CATEGORY                                                        | exposed tr<br>fine cool ha<br>4<br>4<br>4<br>GRADE or S<br>The bends<br>increase<br>length 1<br>longer tha<br>straight lir<br>iength/vall<br>to<br>d<br>GRADE or S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ee roots and<br>in common.<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                                                                                                                                         | 2<br>2<br>Channel<br>chanr<br>Chann                                 | Pr<br>straight;<br>elized fo<br>el length/                                                               | 1<br>Dor<br>waterwa<br>r a long<br>valley le                                 | 0<br>Avg.Score<br>ay has been<br>distance.<br>ingth_<1.0           |       | 2<br>Barbour, 199<br>EPA RBA<br>Chapter 5 pr<br>5-25; KDWP<br>1996                                                          |
| Grade (Right)<br>CHANNEL RO<br>3a.Channel<br>Sinuosity<br>(bends in low<br>gradient<br>stream)                                     | 10<br>UGHNESS I<br>The bends in<br>stream leng<br>than if it<br>length/vall        | 9<br>FACTORS<br>Optimal<br>n the stream<br>glh 2.5 to 4<br>was straight<br>ley length a<br>9<br>9                                      | 8<br>n increase the<br>limes longer<br>t. Channel<br>at least >1.5.                                   | COI                                                                                            | OITION (     Suboptin     in the stree     right 1.5 to 2     as a straigh     valley leng     6     NDITION (     Suboptin                                                     | CATEGORY<br>nal<br>m increase the<br>2.5 times tonge<br>it line. Channi<br>th 1.2 to 1.5<br>5<br>5<br>CATEGORY<br>nal                                           | exposed fr<br>fine root has<br>4<br>4<br>GRADE or 5<br>Mar<br>5 The bends<br>9 Increase<br>1 longer tha<br>straight fir<br>ionger th | ee roots and<br>irr common:<br>3<br>3<br>3<br>SCORE<br>ginal<br>in the stream<br>the stream<br>the stream<br>o 1.5 times<br>an if it was a<br>te. Channel<br>ey length 1.0<br>1.2.<br>3<br>SCORE<br>ginal                                                         | 2<br>2<br>Channel<br>chann<br>Channel<br>chann                      | P<br>straight;<br>elized fo<br>el length/                                                                | 1<br>Door<br>waterwa<br>r a long<br>valley le                                | 0<br>Avg_Score<br>ay has beer<br>distance.<br>nngth_<1.0<br>0      |       | Barbour, 19:<br>EPA RBA<br>Chapter 5 pi<br>5-25; KDWF<br>1996<br>KDWP, 199,<br>Kansas                                       |
| Grade (Right)<br>CHANNEL RO<br>3a.Channel<br>Sinuosity<br>(bends in low<br>gradient<br>stream)<br>Grade                            | 10<br>UGHNESS I<br>The bends in<br>stream leng<br>than if it<br>length/vall        | 9<br>FACTORS<br>Optimal<br>n the stream<br>glh 2.5 to 4<br>was straight<br>ley length a<br>9<br>9                                      | 8<br>nincrease the<br>imes longer<br>t. Channel<br>t least >1.5.<br>8<br>8<br>enlargement             | COI<br>The bends<br>stream ler<br>than if it w<br>length                                       | NDITION (<br>Suboplim<br>in the stree<br>gth 1.5 to 5<br>as a straigh<br>valley leng<br>base<br>Suboptin<br>vel bars of<br>Suboptin<br>vel bars of                              | 5<br>CATEGORY 1<br>nal<br>am increase the<br>2.5 times longe<br>the Channel<br>th 1.2 to 1.5<br>5<br>CATEGORY 1<br>nal<br>coarse stones                         | GRADE or S<br>GRADE or S<br>Mar<br>The bends<br>The bends<br>The bends<br>Increase<br>I length 11<br>Ionger tha<br>straight fir<br>length/vallie<br>to<br>4<br>GRADE or S<br>Sediment to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ee roots and<br>ir common:<br>3<br>3<br>3<br>3<br>3<br>5<br>5<br>5<br>6<br>7<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8                                                                                            | 2<br>2<br>Channel<br>chann<br>Channel<br>2<br>2                     | Pi<br>straight;<br>slized fo<br>el length/<br>l<br>divided l                                             | 1<br>Door<br>waterwa<br>r a long<br>valley le<br>1<br>1<br>Door<br>nto braid | 0<br>Avg.Score<br>ay has been<br>distance.<br>ingth_<1.0           |       | 2<br>2<br>Barbour, 19<br>EPA RBA<br>Chapter 5 pi<br>5-25; KDWP<br>1996<br>KDWP, 199<br>Kansas<br>Subjective                 |
| Grade (Right)<br>CHANNEL RO<br>3a.Channel<br>Sinuosity<br>(bends in low<br>gradient<br>stream)<br>Grade<br>3b. Boltom<br>Substrate | 10<br>UGHNESS I<br>The bends in<br>stream leng<br>than if itv<br>length/vall<br>10 | 9<br>FACTORS<br>Optimal<br>n the stream<br>gth 2.5 to 4<br>was straight<br>ley length a<br>9<br>Optimal<br>0 channel e<br>ting from se | 8<br>nincrease the<br>imes longer<br>t. Channel<br>t least >1.5.<br>8<br>8<br>enlargement             | COI<br>The bends<br>stream ler<br>than if it w<br>length<br>7<br>COI<br>Some gra<br>and well-w | NDITION (<br>Suboplim<br>in the stree<br>gth 1.5 to 5<br>as a straigh<br>valley leng<br>base<br>Suboptin<br>vel bars of<br>Suboptin<br>vel bars of                              | 5<br>CATEGORY 1<br>nal<br>am increase the<br>2.5 times tonge<br>11 tine. Channu<br>th 1.2 to 1.5<br>5<br>CATEGORY<br>nal<br>coarse stones<br>rs present, ilttle | exposed tr<br>fine cool has<br>4<br>4<br>4<br>6<br>6<br>7<br>7<br>1<br>7<br>1<br>8<br>7<br>1<br>8<br>7<br>1<br>8<br>7<br>1<br>9<br>7<br>1<br>8<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>9<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ee roots and<br>irr common:<br>3<br>3<br>3<br>SCORE<br>ginal<br>in the stream<br>the stream<br>the stream<br>o 1.5 times<br>an if it was a<br>te. Channel<br>ey length 1.0<br>1.2.<br>3<br>SCORE<br>ginal                                                         | 2<br>2<br>Channel<br>chann<br>Channel<br>2<br>Channel<br>is channel | Pr<br>straight;<br>straight;<br>elized fo<br>el length/<br>el length/<br>pelized;<br>states<br>divided l | 1<br>Door<br>valerwa<br>r a long<br>valley le<br>1<br>1                      | 0<br>Avg.Score<br>ay has beer<br>distance.<br>ingth_≤1.0<br>0<br>0 |       | Barbour, 199<br>EPA RBA<br>Chapter 5 ps<br>5-25; KDWP<br>1996<br>Kansas<br>Subjective<br>Evaluation o<br>Aquatic            |
| Grade (Right)<br>CHANNEL RO<br>Sinuosity<br>(bends in low<br>gradient<br>stream)<br>Grade                                          | 10<br>UGHNESS I<br>The bends in<br>stream leng<br>than if itv<br>length/vall<br>10 | 9<br>FACTORS<br>Optimal<br>n the stream<br>gth 2.5 to 4<br>was straight<br>ley length a<br>9<br>Optimal<br>0 channel e<br>ting from se | 8<br>nincrease the<br>limes longer<br>t. Channel<br>at least >1.5.<br>8<br>8<br>enlargement<br>diment | COI<br>The bends<br>stream ler<br>than if it w<br>length<br>7<br>COI<br>Some gra<br>and well-w | NDITION (<br>Suboptim<br>in the stree<br>gth 1.5 to 2<br>as a straigh<br>valley leng<br>base of the street<br>straight<br>valley long<br>Suboptim<br>vel bars of<br>astred debr | 5<br>CATEGORY 1<br>nal<br>am increase the<br>2.5 times tonge<br>11 tine. Channu<br>th 1.2 to 1.5<br>5<br>CATEGORY<br>nal<br>coarse stones<br>rs present, ilttle | exposed tr<br>fine cool has<br>4<br>4<br>4<br>6<br>6<br>7<br>7<br>1<br>7<br>1<br>8<br>7<br>1<br>8<br>7<br>1<br>8<br>7<br>1<br>9<br>7<br>1<br>8<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>9<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ee roots and<br>in common.<br>3<br>3<br>3<br>3<br>SCORE<br>ginal<br>in the stream<br>o 1.5 times<br>in if twas a<br>the stream<br>o 1.5 times<br>an if twas a<br>the channel<br>ey length 1.0<br>1.2.<br>]<br>3<br>SCORE<br>ginal<br>sars of rocks<br>silt common | 2<br>2<br>Channel<br>chann<br>Channel<br>2<br>Channel<br>is channel | Pr<br>straight;<br>straight;<br>elized fo<br>el length/<br>el length/<br>pelized;<br>states<br>divided l | 1<br>Door<br>valerwa<br>r a long<br>valley le<br>1<br>1                      | 0<br>Avg.Score<br>ay has beer<br>distance.<br>ingth_10<br>0        |       | 2<br>2<br>Barbour, 199<br>EPA RBA<br>Chapter 5 pa<br>5-25; KDWP,<br>1996<br>Konsas<br>Subjective<br>Evaluation of           |
| Grade (Right)<br>CHANNEL RO<br>3a.Channel<br>Sinuosity<br>(bends in low<br>gradient<br>stream)<br>Grade<br>3b. Boltom<br>Substrate | 10<br>UGHNESS I<br>The bends in<br>stream leng<br>than if itv<br>length/vall<br>10 | 9<br>FACTORS<br>Optimal<br>n the stream<br>gth 2.5 to 4<br>was straight<br>ley length a<br>9<br>Optimal<br>0 channel e<br>ting from se | 8<br>nincrease the<br>limes longer<br>t. Channel<br>at least >1.5.<br>8<br>8<br>enlargement<br>diment | COI<br>The bends<br>stream ler<br>than if it w<br>length<br>7<br>COI<br>Some gra<br>and well-w | NDITION (<br>Suboptim<br>in the stree<br>gth 1.5 to 2<br>as a straigh<br>valley leng<br>base of the street<br>straight<br>valley long<br>Suboptim<br>vel bars of<br>astred debr | 5<br>CATEGORY 1<br>nal<br>am increase the<br>2.5 times tonge<br>11 tine. Channu<br>th 1.2 to 1.5<br>5<br>CATEGORY<br>nal<br>coarse stones<br>rs present, ilttle | exposed tr<br>fine cool has<br>4<br>4<br>4<br>6<br>6<br>7<br>7<br>1<br>7<br>1<br>8<br>7<br>1<br>8<br>7<br>1<br>8<br>7<br>1<br>9<br>7<br>1<br>8<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>9<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ee roots and<br>in common.<br>3<br>3<br>3<br>3<br>SCORE<br>ginal<br>in the stream<br>o 1.5 times<br>in if twas a<br>the stream<br>o 1.5 times<br>an if twas a<br>the channel<br>ey length 1.0<br>1.2.<br>]<br>3<br>SCORE<br>ginal<br>sars of rocks<br>silt common | 2<br>2<br>Channel<br>chann<br>Channel<br>2<br>Channel<br>is channel | Pr<br>straight;<br>straight;<br>elized fo<br>el length/<br>el length/<br>pelized;<br>states<br>divided l | 1<br>Door<br>valerwa<br>r a long<br>valley le<br>1<br>1                      | 0<br>Avg.Score<br>ay has beer<br>distance.<br>ingth_10<br>0        |       | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                 |
| Grade (Right)<br>CHANNEL RO<br>3a.Channel<br>Sinuosity<br>(bends in low<br>gradient<br>stream)<br>Grade<br>3b. Boltom<br>Substrate | 10<br>UGHNESS I<br>The bends in<br>stream leng<br>than if itv<br>length/vall<br>10 | 9<br>FACTORS<br>Optimal<br>n the stream<br>gth 2.5 to 4<br>was straight<br>ley length a<br>9<br>Optimal<br>0 channel e<br>ting from se | 8<br>nincrease the<br>limes longer<br>t. Channel<br>at least >1.5.<br>8<br>8<br>enlargement<br>diment | COI<br>The bends<br>stream ler<br>than if it w<br>length<br>7<br>COI<br>Some gra<br>and well-w | NDITION (<br>Suboptim<br>in the stree<br>gth 1.5 to 2<br>as a straigh<br>valley leng<br>base of the street<br>straight<br>valley long<br>Suboptim<br>vel bars of<br>astred debr | 5<br>CATEGORY 1<br>nal<br>am increase the<br>2.5 times tonge<br>11 tine. Channu<br>th 1.2 to 1.5<br>5<br>CATEGORY<br>nal<br>coarse stones<br>rs present, ilttle | exposed tr<br>fine cool has<br>4<br>4<br>4<br>6<br>6<br>7<br>7<br>1<br>7<br>1<br>8<br>7<br>1<br>8<br>7<br>1<br>8<br>7<br>1<br>9<br>7<br>1<br>8<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>9<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ee roots and<br>in common.<br>3<br>3<br>3<br>3<br>SCORE<br>ginal<br>in the stream<br>o 1.5 times<br>in if twas a<br>the stream<br>o 1.5 times<br>an if twas a<br>the channel<br>ey length 1.0<br>1.2.<br>]<br>3<br>SCORE<br>ginal<br>sars of rocks<br>silt common | 2<br>2<br>Channel<br>chann<br>Channel<br>2<br>Channel<br>is channel | Pr<br>straight;<br>straight;<br>elized fo<br>el length/<br>el length/<br>pelized;<br>states<br>divided l | 1<br>Door<br>valerwa<br>r a long<br>valley le<br>1<br>1                      | 0<br>Avg.Score<br>ay has beer<br>distance.<br>ingth_10<br>0        |       | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                 |
| Grade (Right)<br>CHANNEL RO<br>3a.Channel<br>Sinuosity<br>(bends in low<br>gradient<br>stream)<br>Grade<br>3b. Boltom<br>Substrate | 10<br>UGHNESS I<br>The bends in<br>stream leng<br>than if itv<br>length/vall<br>10 | 9<br>FACTORS<br>Optimal<br>n the stream<br>gth 2.5 to 4<br>was straight<br>ley length a<br>9<br>Optimal<br>0 channel e<br>ting from se | 8<br>nincrease the<br>limes longer<br>t. Channel<br>at least >1.5.<br>8<br>8<br>enlargement<br>diment | COI<br>The bends<br>stream ler<br>than if it w<br>length<br>7<br>COI<br>Some gra<br>and well-w | NDITION (<br>Suboptim<br>in the stree<br>gth 1.5 to 2<br>as a straigh<br>valley leng<br>base of the street<br>straight<br>valley long<br>Suboptim<br>vel bars of<br>astred debr | 5<br>CATEGORY 1<br>nal<br>am increase the<br>2.5 times tonge<br>11 tine. Channu<br>th 1.2 to 1.5<br>5<br>CATEGORY<br>nal<br>coarse stones<br>rs present, ilttle | exposed tr<br>fine cool has<br>4<br>4<br>4<br>6<br>6<br>7<br>7<br>1<br>7<br>1<br>8<br>7<br>1<br>8<br>7<br>1<br>8<br>7<br>1<br>9<br>7<br>1<br>8<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>7<br>9<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ee roots and<br>in common.<br>3<br>3<br>3<br>3<br>SCORE<br>ginal<br>in the stream<br>o 1.5 times<br>in if twas a<br>the stream<br>o 1.5 times<br>an if twas a<br>the channel<br>ey length 1.0<br>1.2.<br>]<br>3<br>SCORE<br>ginal<br>sars of rocks<br>silt common | 2<br>2<br>Channel<br>chann<br>Channel<br>2<br>Channel<br>is channel | P<br>straight,<br>straight,<br>elized fo<br>divided i<br>helized; s<br>helized; s                        | 1<br>Door<br>valerwa<br>r a long<br>valley le<br>1<br>1                      | 0<br>Avg.Score<br>ay has beer<br>distance.<br>ingth_10<br>0        |       | 2<br>2<br>EPA RBA<br>Chapter 5 par<br>5-25; KDWP,<br>1996<br>KDWP, 1996<br>Kansas<br>Subjective<br>Evaluation of<br>Aquatic |

|                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                   |                                                                    |                                                                                                   | CON                                                                              |                                                                                                                                                                     |                                                                                                      | GORY (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SRADE or                                                                                                                                     |                                                                                                                               |                                                                                                                                           |                                             |                        |                     |                                                   | Ĵ   | KDWP, 19                                                                                                               |
|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|------------------------|---------------------|---------------------------------------------------|-----|------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Optima                                                                                                                            |                                                                    |                                                                                                   |                                                                                  | Subopti                                                                                                                                                             |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                              | argina                                                                                                                        |                                                                                                                                           |                                             |                        | 200C                |                                                   | 1   | Newton e                                                                                                               |
| 3c. Instream<br>Bottom<br>Topography                                                                                                | >7 of the<br>boulders/<br>debris<br>overhan<br>vegetat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | te following<br>s/gravel, log<br>s, backwate<br>nging vegel<br>ted shallow                                                        | s/ian<br>ers/o<br>latio<br>/s, ro<br>r side                        | rge woody<br>xbows,<br>n, riffles,<br>potwads,                                                    |                                                                                  | bottom inc<br>sted in Opt                                                                                                                                           |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Channel b<br>< 5 of the<br>Optim                                                                                                             | items                                                                                                                         | s listed in                                                                                                                               |                                             |                        |                     | les <3 of the<br>al Category                      |     | 1998<br>USDA/NF<br>SVAP pa                                                                                             |
| Grade                                                                                                                               | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9                                                                                                                                 | Τ                                                                  | 8                                                                                                 | 7                                                                                | 6                                                                                                                                                                   |                                                                                                      | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4                                                                                                                                            |                                                                                                                               | 3                                                                                                                                         | 2                                           | 1                      | 1                   | 0                                                 | 0   |                                                                                                                        |
| Grade                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                   |                                                                    |                                                                                                   | 100                                                                              | UDITION                                                                                                                                                             | CATE                                                                                                 | COPY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | GRADE or                                                                                                                                     | 500                                                                                                                           | סב                                                                                                                                        |                                             |                        |                     |                                                   | -   |                                                                                                                        |
| Or<br>3c. Manning's                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Optima                                                                                                                            | al                                                                 | 1                                                                                                 | 001                                                                              | Subopti                                                                                                                                                             |                                                                                                      | .00111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                              | argina                                                                                                                        |                                                                                                                                           |                                             |                        | Poor                |                                                   | 1   | Į                                                                                                                      |
| 3c. Manning's<br>n                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0,05 to 0.1                                                                                                                       | .099                                                               |                                                                                                   |                                                                                  | 0.035 to                                                                                                                                                            | 0.05                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.021 to 0                                                                                                                                   | .03 or<br>0.15                                                                                                                | >0,10 to                                                                                                                                  | obstructio                                  | on to fic<br>ielizatio | w or 0.0            | excessive<br>D1 to 0.02 du<br>Ilean, smoolf       |     |                                                                                                                        |
| Grade                                                                                                                               | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9                                                                                                                                 |                                                                    | 8                                                                                                 | 7                                                                                | 6                                                                                                                                                                   |                                                                                                      | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4                                                                                                                                            |                                                                                                                               | 3                                                                                                                                         | 2                                           |                        | 1                   | 0                                                 | 1   |                                                                                                                        |
|                                                                                                                                     | <b> </b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                   |                                                                    |                                                                                                   | 100                                                                              | NDITION                                                                                                                                                             | CATE                                                                                                 | GORY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | GRADE or                                                                                                                                     | SCO                                                                                                                           | RE                                                                                                                                        |                                             |                        |                     |                                                   | -   | USACE,                                                                                                                 |
|                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Optima                                                                                                                            | al                                                                 | 1                                                                                                 |                                                                                  | Subopti                                                                                                                                                             |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                              | argina                                                                                                                        |                                                                                                                                           |                                             |                        | Poor                |                                                   | 1   | Norfolk                                                                                                                |
| 3d. Channel<br>Incision<br>(TLB/BFD=BH<br>R; 1/BHR*Adj<br>Factor =CI)                                                               | channel s<br>ratio >1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | slope >2%;<br>.4; Where c                                                                                                         | ; Eni<br>chan                                                      | renchment<br>net slope                                                                            | channel s<br>ratio >1.                                                           | atio_≥1.2 <<br>slope >2%<br>.4; Where<br>intrenchme                                                                                                                 | , Entre                                                                                              | nchment<br>el slope                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | and Wr<br>slop<br>Entrenchn<br>Where c<br>≤2%, E                                                                                             | nere c<br>pe > 2<br>nent ra<br>channe                                                                                         | hannel<br>%.<br>atio >1.4;<br>el slope<br>chment                                                                                          | slope >2<br>Whe                             | %, Entere cha          | renchme             | Mere channa<br>ant ratio_4.4:<br>pe_2%,<br>io_2.0 |     | District, 2<br>SAAM Fi<br>#1 and V<br>Stream<br>Geomorp<br>Assessm<br>Phase 2                                          |
| TLB =                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10                                                                                                                                |                                                                    |                                                                                                   | BHR =                                                                            | 1                                                                                                                                                                   |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b> </b>                                                                                                                                     |                                                                                                                               |                                                                                                                                           |                                             |                        |                     |                                                   | -   |                                                                                                                        |
| BFD =                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10                                                                                                                                |                                                                    |                                                                                                   |                                                                                  |                                                                                                                                                                     |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                              |                                                                                                                               |                                                                                                                                           |                                             |                        |                     |                                                   |     |                                                                                                                        |
| Grade                                                                                                                               | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9                                                                                                                                 | L                                                                  | 8(                                                                                                | 7                                                                                | 6                                                                                                                                                                   |                                                                                                      | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4                                                                                                                                            |                                                                                                                               | 3                                                                                                                                         | 2                                           |                        | 1                   | 0                                                 | 0   | 4                                                                                                                      |
|                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                   |                                                                    |                                                                                                   |                                                                                  |                                                                                                                                                                     |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                              |                                                                                                                               | ~~~~~~                                                                                                                                    |                                             |                        |                     |                                                   |     | 1                                                                                                                      |
| 4 DYNAMIC SUF                                                                                                                       | RFACE WA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ATER STO                                                                                                                          | DRA                                                                | GE                                                                                                | ·····                                                                            |                                                                                                                                                                     |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                              |                                                                                                                               |                                                                                                                                           |                                             |                        |                     |                                                   |     |                                                                                                                        |
| 4 DYNAMIC SUF                                                                                                                       | RFACE WA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ATER STC                                                                                                                          | DRA                                                                | GE                                                                                                | 100                                                                              |                                                                                                                                                                     | CATE                                                                                                 | GORY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                              | 500                                                                                                                           | PE                                                                                                                                        |                                             |                        |                     |                                                   | 4   | Newlon                                                                                                                 |
| DYNAMIC SUF                                                                                                                         | boulders/gravel, logs/large w/<br>debris, backwaters/oxbow/<br>overhanging vegetation, riff<br>vegetated shallows, rootwar<br>undercut banks, or side char<br>pools<br>10 9 8<br>Optimal<br>0.05 to 0.099<br>10 9 8<br>0.05 to 0.099<br>10 9 8<br>10 9 10 9 10 9 10 10 9 10 10 10 10 10 10 10 10 10 10 10 10 10 | GE                                                                                                                                | 100                                                                | NDITION<br>Subopti                                                                                |                                                                                  | GORY                                                                                                                                                                | RADE or                                                                                              | SCO<br>argina                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                              | 1                                                                                                                             |                                                                                                                                           | Poor                                        | ·····                  | -                   |                                                   |     |                                                                                                                        |
| 4a.Pools                                                                                                                            | Deep and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Optima<br>d shallow p                                                                                                             | al                                                                 | abundant;                                                                                         | Pools pr                                                                         | Subopti<br>resent, but                                                                                                                                              | mal<br>not at                                                                                        | oundant;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Mi<br>Poois                                                                                                                                  | argina<br>prese                                                                                                               | al<br>nt, but                                                                                                                             |                                             | osent, c               | or the en           | itire bottom is                                   |     | 1998 US<br>NRCS S                                                                                                      |
|                                                                                                                                     | Deep and<br>greater the<br>is obscure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Optima<br>d shallow p<br>ian 30% of<br>e due to dep                                                                               | al<br>bools<br>the p                                               | abundant;<br>pool boiton<br>or pools are                                                          | Pools pr<br>from 10-3<br>obscure of                                              | Subopti                                                                                                                                                             | mal<br>not at<br>pool t<br>ith, or t                                                                 | oundant;<br>botlom is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Mi<br>Pools<br>shallow;<br>the po<br>obscure d<br>the pools                                                                                  | argina<br>prese<br>from t<br>ol bot<br>lue to                                                                                 | al<br>nt, but<br>5-10% of<br>lom is<br>depth, or<br>ss than 3                                                                             | disce                                       | osent, c               | or the en           | itire bottom it                                   |     | 1998 US<br>NRCS S<br>page 14;                                                                                          |
| 4a.Pools<br>(abundant,<br>present or                                                                                                | Deep and<br>greater that<br>is obscure<br>at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Optima<br>d shallow p<br>ran 30% of t<br>e due to deg<br>t least 5 fee                                                            | al<br>bools<br>the p                                               | abundant;<br>pool boiton<br>or pools are                                                          | Pools pr<br>from 10-3<br>obscure of                                              | Suboptin<br>resent, but<br>30% of the<br>due to dep                                                                                                                 | mal<br>not at<br>pool t<br>ith, or t                                                                 | oundant;<br>botlom is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Mi<br>Pools<br>shallow;<br>the po<br>obscure d<br>the pools                                                                                  | argina<br>prese<br>from {<br>ol bot<br>lue to<br>are les                                                                      | al<br>nt, but<br>5-10% of<br>lom is<br>depth, or<br>ss than 3                                                                             | disce                                       | osent, c               | or the en           |                                                   | 2   | 1998 US<br>NRCS S<br>page 14;<br>Barbour,<br>1999                                                                      |
| 4a.Pools<br>(abundant,<br>present or<br>absent)<br>Grade                                                                            | Deep and<br>greater that<br>is obscure<br>at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Optima<br>d shallow p<br>ran 30% of t<br>e due to deg<br>t least 5 fee                                                            | al<br>bools<br>the p                                               | abundant;<br>pool boltom<br>or pools are<br>ep.                                                   | Pools pr<br>from 10-3<br>obscure o<br>are<br>7                                   | Subopti<br>esent, but<br>30% of the<br>due to dep<br>at least 3 t<br>6                                                                                              | mal<br>not at<br>pool t<br>ith, or t<br>feet de                                                      | oundant;<br>botlom is<br>the pools<br>bep.<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | M<br>Pools<br>shallow;<br>the po<br>obscure d<br>the pools<br>fee<br>4                                                                       | argina<br>prese<br>from 5<br>ol bot<br>lue to<br>are les<br>et dee                                                            | al<br>nt, but<br>5-10% of<br>lom is<br>depth, or<br>ss than 3<br>p.<br>3                                                                  | disce                                       | osent, c               | or the en<br>No wal | ler = zero,                                       |     | 1998 USI<br>NRCS S <sup>1</sup><br>page 14;<br><i>Barbour,</i><br>1999                                                 |
| 4a.Pools<br>(abundant,<br>present or<br>absent)<br>Grade<br>4b. Channel                                                             | Deep and<br>greater that<br>is obscure<br>at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Optime<br>d shallow p<br>han 30% of t<br>e due to deg<br>t least 5 fee<br>9                                                       | al<br>bools<br>the j<br>pth. de                                    | abundant;<br>pool boltom<br>or pools are<br>ep.                                                   | Pools pr<br>from 10-3<br>obscure o<br>are<br>7                                   | Suboptinesent, but<br>30% of the<br>due to dep<br>at least 3 to<br>6<br>NDITION                                                                                     | mal<br>not at<br>pool I<br>th, or I<br>feet de<br>CATE                                               | oundant;<br>botlom is<br>the pools<br>bep.<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Mi<br>Pools<br>shallow;<br>the po<br>obscure d<br>the pools<br>fee<br>4<br>3RADE of                                                          | argina<br>prese<br>from {<br>ol bot<br>iue to<br>are les<br>et dee                                                            | al<br>nt, but<br>5-10% of<br>lom is<br>depth, or<br>ss than 3<br>sp.<br>3<br>DRE                                                          | disce                                       | osent, c<br>ernible.   | or the en<br>No wal | ler = zero,                                       |     | 1998 USI<br>NRCS S<br>page 14;<br>Barbour,<br>1999                                                                     |
| 4a.Pools<br>(abundant,<br>present or<br>absent)<br>Grade                                                                            | Deep and<br>greater that<br>is obscure<br>at<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Optima<br>d shallow p<br>an 30% of<br>due to dep<br>t least 5 fee<br>9<br>9<br>Optima                                             | al<br>noois<br>the j<br>pth. c<br>et de                            | e abundant;<br>pool boltom<br>or pools are<br>ep.<br>8                                            | Pools pr<br>from 10-3<br>obscure o<br>are<br>7<br>COI                            | Subopti<br>esent, but<br>30% of the<br>due to dep<br>at least 3 t<br>6                                                                                              | mal<br>not at<br>pool I<br>ih, or I<br>feet de<br>CATE<br>mal                                        | bundant;<br>botlom is<br>the pools<br>hep.<br>5<br>GORY (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mi<br>Pools<br>shallow;<br>the po<br>obscure d<br>the pools<br>fee<br>4<br>3RADE of                                                          | argina<br>prese<br>from 5<br>ol bot<br>lue to<br>are les<br>et dee                                                            | al<br>nt, but<br>5-10% of<br>lom is<br>depth, or<br>ss than 3<br>p.<br>3<br>DRE<br>al                                                     | disce<br>2                                  | osent, c<br>ernible.   | nr the en<br>No wat | ler = zero,                                       | 2   | Barbour, (<br>1999                                                                                                     |
| 4a.Pools<br>(abundant,<br>present or<br>absent)<br>Grade<br>4b. Channel<br>Flow Status<br>(degree to<br>which channel<br>is filled) | Deep and<br>greater the<br>is obscure<br>at<br>10<br>Water real<br>banks<br>channe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Optima<br>d shallow p<br>nan 30% of t<br>e due to deg<br>t least 5 fee<br>g<br>Optima<br>eaches bass<br>and minim<br>el substrate | al<br>pools<br>the p<br>pth. c<br>el de<br>al<br>al<br>al<br>al ar | abundant;<br>bool boltom<br>or pools are<br>ep.<br><u>8</u><br>both lower<br>mount of<br>ixposed. | Pools pr<br>from 10-<br>obscure<br>are<br>7<br>COt<br>Water fil<br>chann<br>sut  | Suboptil<br>esent, but<br>30% of the<br>due to dep<br>at least 3 i<br>at least 3 i<br>at least 3 i<br>both<br>Suboptil<br>Its >75% o<br>et; or <25%<br>bstrate is e | mal<br>not at<br>pool t<br>ith, or t<br>feet de<br>CATE<br>mal<br>if lhe a<br>% of ch                | 5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Mi<br>Paols<br>Shallow;<br>the pools<br>fee<br>4<br>3RADE or<br>M<br>Water fills<br>available<br>Jor riffee<br>mosti                         | argina<br>preset<br>from 5<br>ol bot<br>lue to<br>are les<br>et dee<br>SCC<br>argina<br>25-75<br>e chan<br>substr             | al<br>nt, but<br>5-10% of<br>lom is<br>depth, or<br>ss than 3<br>p.<br>3<br>DRE<br>al<br>5% of the<br>anel, and<br>ates are<br>osed.      | 2<br>Very little<br>present a               | osent, c<br>ernible.   | r the en<br>No wal  | ler = zero.<br>0<br>nel and mosi<br>s. No water   | 2   | 1998 US<br>NRCS S'<br>page 14;<br>Barbour,<br>1999<br>Barbour,<br>1999 EP,<br>page 5-11<br>9#5; TCE                    |
| 4a.Pools<br>(abundant,<br>present or<br>absent)<br>Grade<br>4b. Channel<br>Flow Status<br>(degree to<br>which channel               | Deep and<br>greater that<br>is obscure<br>at<br>10<br>Water real<br>banks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Optima<br>d shallow p<br>nan 30% of<br>a due to deg<br>t least 5 fee<br>9<br>Optima<br>eaches base<br>a nd minim                  | al<br>pools<br>the p<br>pth. c<br>el de<br>al<br>al<br>al<br>al ar | abundant;<br>bool boltom<br>or pools are<br>ep.<br>8<br>8<br>both lower<br>mount of               | Pools pr<br>from 10-:<br>obscure o<br>are<br>7<br>7<br>COt<br>Water fil<br>chann | Suboptii<br>esent, but<br>30% of the<br>due to dep<br>at least 3 t<br>6<br>NDITION<br>Subopti<br>Ils >75% o<br>el; or <25%                                          | mal<br>not at<br>pool t<br>ith, or t<br>feet de<br>CATE<br>mal<br>if lhe a<br>% of ch                | bundant;<br>bottom is<br>the pools<br>bep.<br>5<br>GORY (<br>vailable<br>hannel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Mi<br>Pools<br>shallow;<br>the pools<br>fee<br>4<br>3RADE of<br>M<br>Water fills<br>available<br>Jor nifte s                                 | argina<br>preset<br>from 5<br>ol bot<br>lue to<br>are les<br>et dee<br>SCC<br>argina<br>25-75<br>e chan<br>substr             | al<br>nt, but<br>5-10% of<br>lom is<br>depth, or<br>ss than 3<br>p.<br>3<br>0RE<br>al<br>5% of the<br>net, and<br>ates are                | disce<br>2<br>Very little                   | osent, c<br>ernible.   | r the en<br>No wal  | ler = zero,                                       | 2   | 1998 US<br>NRCS S<br>page 14;<br>Barbour,<br>1999<br>Barbour,                                                          |
| 4a.Pools<br>(abundant,<br>present or<br>absent)<br>Grade<br>4b. Channel<br>Flow Status<br>(degree to<br>which channel<br>is filled) | Deep and<br>greater the<br>is obscure<br>at<br>10<br>Water real<br>banks<br>channe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Optima<br>d shallow p<br>nan 30% of t<br>e due to deg<br>t least 5 fee<br>g<br>Optima<br>eaches bass<br>and minim<br>el substrate | al<br>pools<br>the p<br>pth. c<br>el de<br>al<br>al<br>al<br>al ar | abundant;<br>bool boltom<br>or pools are<br>ep.<br><u>8</u><br>both lower<br>mount of<br>ixposed. | Pools pr<br>from 10-<br>obscure<br>are<br>7<br>COt<br>Water fil<br>chann<br>sut  | Suboptii<br>resent, but<br>30% of the<br>due to dep<br>at least 3 i<br>6<br>NDITION<br>Suboptii<br>Ils >75% o<br>et; or <25°<br>bstrate is c                        | mal<br>not ab<br>pool t<br>th, or t<br>feet de<br><u>CATE</u><br>mal<br>f lhe a<br>% of ch<br>expose | 5<br>Solory of the pools are | Mi<br>Paois<br>shallow;<br>the po<br>obscure d<br>the pols<br>fee<br>4<br>3RADE or<br>Mater fills<br>available<br>Jor riftle s<br>mostl<br>4 | argina<br>prese<br>from 5<br>col bot<br>lue to<br>are les<br>et dee<br>r SCC<br>argina<br>25-75<br>e chan<br>substr<br>y exps | al<br>nt, but<br>5-10% of<br>lom is<br>depth, or<br>ss than 3<br>p.<br>3<br>DRE<br>al<br>5% of the<br>nnel, and<br>ates are<br>osed.<br>3 | disce<br>2<br>Very little<br>present a<br>2 | ssent, c<br>ernible.   | r the en<br>No wal  | ler = zero.<br>0<br>nel and mosi<br>s. No water   | - 1 | 1998 US<br>NRCS S<br>page 14;<br>Barbour,<br>1999<br>Barbour,<br>1999 EP,<br>page 5-11<br>9#5; TCE<br>1999; VA<br>2005 |

•

(ANN)

|                             | TYPE                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                  | Source                                                |
|-----------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| 1                           | NOTES<br>SEDIMENT TR                                                  | ANSPORT/DEPOSITION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                  |                                                       |
| 1.                          |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                  |                                                       |
|                             |                                                                       | CONDITION CATEGORY GRADE or SCORE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                |                                                       |
|                             | 1a. Bank                                                              | Optimal Suboptimal Marginal Poor<br>Banks stable; evidence of erosion of Moderately stable; infrequent, small Moderately unstable; 30- Unstable; many eroded areas; "raw                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                  |                                                       |
|                             | Stability (score<br>each bank, left<br>or right facing<br>downstream) | bank failure absent or minimal; little areas of erosion mostly healed over<br>potential for future problems, <5% of 5-30% of bank in reach has areas of<br>bank affected.<br>bank affected.                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                  | USDA/NR<br>CS SVAP<br>page 10;<br>Barbour,<br>et al., |
|                             | Grade (Left)                                                          | 10 9 8 7 6 5 4 3 2 1 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3                                                                                                                | 1999 EPA                                              |
|                             | Grade (Right)                                                         | 10 9 8 7 6 5 4 3 2 1 0<br>Autocard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3                                                                                                                |                                                       |
|                             |                                                                       | Avg.Score                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                                       |
|                             |                                                                       | CONDITION CATEGORY GRADE or SCORE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                  |                                                       |
| Ø                           | 1b. Channel                                                           | Optimal Suboptimal Marginal Poor<br>Boltom 1/3 of bank is generally highly Bottom 1/3 of bank is generally highly                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                  |                                                       |
| One Variable                | Stability                                                             | resistant plant/soil matrix or material, resistant plant/soil matrix, or material, plant/soil matrix compromised.                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                  | COG<br>RSAT                                           |
| only c                      | Grade (Left)                                                          | 10 9 8 7 6 5 4 3 2 1 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                |                                                       |
|                             | Grade (Right)                                                         | 10 9 8 7 6 5 4 3 2 1 0<br>Avg.Score                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                  |                                                       |
| re for                      |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                  |                                                       |
| Score                       | or                                                                    | CONDITION CATEGORY GRADE or SCORE Optimal Suboptimal Poor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | aight s bank cs SVAP<br>k has bank cs SVAP<br>gage 10; Barbour, et al.,<br>1999 EP.<br>0 3<br>0 3<br>Score 3<br> |                                                       |
| Enter                       | 1c. Channel<br>Sediments or                                           | >50% gravel or larger substrate; 30-50% gravel or larger substrate; 10-29.9% gravel or larger Substrate is uniform sand, silt, clay,                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                  |                                                       |
| ш                           | Substrate<br>Composition                                              | gravel, cobble boulders; dominant<br>substrate type is gravel or larger;<br>stable moderately stable gravel with some finer sediments;<br>stable moderately stable gravel, but may still be a                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                  |                                                       |
|                             | Grade                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3                                                                                                                |                                                       |
| 2                           | WATER APPE                                                            | RANCE: Clarity or Visibility                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | [                                                                                                                |                                                       |
|                             |                                                                       | CONDITION CATEGORY GRADE or SCORE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                  |                                                       |
|                             |                                                                       | Optimal Suboptimal Marginal Poor<br>Very clear, or clear but tea-colored. Occasionally cloudy, especially after Considerable cloudiness Very turbid or muddy appearance most                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                  |                                                       |
|                             |                                                                       | objects visible at depth 3-6 feet (less objects visible at depth 1,5-3 ft; may visible to depth 0,5-1,5 ft; slow moving water may be bright-green:                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                  |                                                       |
|                             | Water Clarity                                                         | surface. To noticeable film on<br>submerged objects or rocks. have slightly green color, no oil<br>sheen on water surface. So we sections may appeal<br>peagreen; bottom rocks<br>or sumerged objected<br>covered with film.                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                  | SVAP                                                  |
|                             | Grade                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                  |                                                       |
|                             |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                  |                                                       |
| 3                           | PRESENCE O                                                            | AQUATIC VEGETATION: Presence and Percent Coverage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                  |                                                       |
|                             |                                                                       | CONDITION CATEGORY GRADE or SCORE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                  | Newton,                                               |
| ល                           | 1                                                                     | Optimal         Suboptimal         Marginal         Poor           Clear water along entire reach;         Fairly clear or slightly greenish water along entire         Pea green, gray, or brown water along                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                  |                                                       |
| Score for Only One Variable | 3a. Nutrient<br>Enrichment                                            | Clear water along entire reach;<br>diverse aquatic plant community<br>includes low quantaties of many<br>species of macrophyles; little algal<br>growth present.<br>Clear water along entire reach; moderate algal<br>growth on stream substrates.<br>Green gray, or brown water along<br>entire reach; dense stands of<br>growth on stream substrates.<br>Species of macrophyles; little algal<br>growth present.<br>Clear water along entire reach; moderate algal<br>growth on stream substrates.<br>Clear macrophyles; abundant<br>algal growth, especially during<br>warmer months. |                                                                                                                  | USDA/<br>NRCS<br>SVAP                                 |
| or Ö                        | Grade                                                                 | 10 9 8 7 6 5 4 3 2 1 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                |                                                       |
| are f                       |                                                                       | CONDITION CATEGORY GRADE or SCORE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                  | Petersen                                              |
| SC<br>SC                    | or                                                                    | Optimal Suboptimal Marginal Poor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                  | et al.,                                               |
| Enter                       | 3b. Aquatic<br>Vegetation                                             | When present, aquatic vegetation<br>consists of moss and patches of<br>algae.         Algae dominant in pools, larger         Algal mats present, some<br>larger plants along edge.         Algal mats present, some<br>larger plants, few mosses         Algal mats cover bottom, larger<br>plants dominate the channel or NO<br>algae present due to unstable<br>substrate. No water = zero.                                                                                                                                                                                           |                                                                                                                  | 1992<br>RCE form<br>No. 13                            |
|                             | Grade                                                                 | 10 9 8 7 6 5 4 3 2 1 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                  |                                                       |
|                             |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                  |                                                       |

|       |                                                                                                                            |                                                                          |         |               |      | CORE                                                                              | E or S           | GR.   | ATE    | ITION C                                     | OND  | C                          |                  |                  |                   |                      |                         |                |                                |         |  |  |  |  |  |
|-------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|---------|---------------|------|-----------------------------------------------------------------------------------|------------------|-------|--------|---------------------------------------------|------|----------------------------|------------------|------------------|-------------------|----------------------|-------------------------|----------------|--------------------------------|---------|--|--|--|--|--|
|       |                                                                                                                            | Poor                                                                     |         |               | Т    | roinal                                                                            |                  | Ī     |        | uboptim                                     |      |                            |                  |                  | imal              | Opt                  |                         |                |                                |         |  |  |  |  |  |
|       | Fine organic sediment - black in color<br>and foul odor (anaerobic) or no<br>sediment present due to excessive<br>scouring |                                                                          |         |               |      | No leaves or woody<br>debris; coarse and fine<br>organic matter with<br>sediment. |                  |       |        | nd wood s<br>oris wilho                     |      |                            | boow             |                  | of leav<br>sedime | M                    |                         |                |                                |         |  |  |  |  |  |
|       | 0                                                                                                                          | 1                                                                        | T       | 2             |      | 3                                                                                 | 4                |       | T      | 6                                           | T    | 7                          | 8                |                  | 9                 | 1                    | 10                      | +              | Grade                          | C       |  |  |  |  |  |
|       |                                                                                                                            |                                                                          |         |               |      |                                                                                   |                  |       |        |                                             |      | 7000                       | Zinoria          | diata            | Immon             | word                 | CDNI- D                 |                | ANDUSED                        | Ē       |  |  |  |  |  |
|       |                                                                                                                            | ATTERN: Beyond Immediate Riparian Zone CONDITION CATEGORY GRADE or SCORE |         |               |      |                                                                                   |                  |       |        |                                             |      |                            |                  |                  | Ē                 | AND 00011            | 1                       |                |                                |         |  |  |  |  |  |
|       |                                                                                                                            |                                                                          |         |               |      |                                                                                   |                  | GR    |        |                                             |      | CI                         |                  |                  |                   |                      |                         | 1              |                                |         |  |  |  |  |  |
|       |                                                                                                                            | Poor                                                                     |         | ,             |      | rginal                                                                            |                  |       |        | uboptim                                     |      |                            |                  |                  | imal              |                      | L-                      |                |                                |         |  |  |  |  |  |
|       | ops                                                                                                                        | row cro                                                                  | viaini  | P             | but  | w crops and<br>ome wooded<br>be present bu<br>ed patches                          | ture; s<br>s may |       |        | it pasture<br>ind swam<br>crops             |      |                            | prest,<br>natura | ig of f<br>nd/ör | airie, a<br>ands. | tive pra             | Undistur<br>ristine na  | P              |                                |         |  |  |  |  |  |
|       | 0                                                                                                                          | 1                                                                        | 1       | 2             | -    | 3                                                                                 | 4                | +     |        | 6                                           | T    | 7                          | 8                | [                | 9                 | T                    | 10                      | +              | Grade (Left)                   | 1       |  |  |  |  |  |
|       | 0                                                                                                                          | 1                                                                        | 1       | 2             | -    | 3                                                                                 | 4                | 1     |        | 6                                           | -    | 7                          | 8                |                  | 9                 | 1                    | 10                      | 5              | Grade (Right)                  |         |  |  |  |  |  |
| 1     | Avg.Score                                                                                                                  |                                                                          |         |               |      |                                                                                   |                  |       |        |                                             |      |                            |                  |                  |                   |                      |                         |                |                                | Г       |  |  |  |  |  |
|       |                                                                                                                            | ·····                                                                    |         | ·····         |      |                                                                                   |                  |       |        |                                             |      |                            | Υ:               | INUL             | CONT              | AND (                | WIDTH                   | DNE            | RIPARIAN ZO                    | 6 F     |  |  |  |  |  |
|       |                                                                                                                            |                                                                          |         |               |      | 0005                                                                              |                  |       | ATT    | TION                                        |      |                            |                  |                  |                   |                      |                         | -              |                                |         |  |  |  |  |  |
|       |                                                                                                                            | Poor                                                                     |         | r             |      | roinal                                                                            |                  | GR.   |        | UTION C                                     |      |                            |                  |                  | imal              | Ont                  | ·····                   | $\cdot \vdash$ | 6a. Riparian                   |         |  |  |  |  |  |
|       | notors (natural                                                                                                            |                                                                          |         | Width of ripa | 12   | arian zone 6-12                                                                   |                  | t v   |        | in zone 12-                                 |      | Width of n                 | s (1-2           | mete             |                   |                      | Midth of ri             |                | Zone Width                     |         |  |  |  |  |  |
|       | live channel<br>talion due to<br>:s.                                                                                       |                                                                          | le ripa | width), litt  | ),   | /3-1/2 active<br>dih vegetated),<br>human activities                              | nnel wic         | y i   | s have | el width w/i<br>n activities<br>apacted zon | huma | 1 active of<br>grasses), i |                  | es hav           | activiti          |                      | hannel wid<br>grasses), | · I            | (from stream<br>edge to field) |         |  |  |  |  |  |
|       | 0                                                                                                                          | 1                                                                        | 1       | 2             | -    | 3                                                                                 | 4                | 1     | T      | 6                                           | T    | 7                          | 8                | [                | 9                 | T                    | 10                      | -              | Grade (left)                   | C       |  |  |  |  |  |
|       | 0                                                                                                                          | 1                                                                        |         | 2             |      | 3                                                                                 | 4                | 1     |        | 6                                           |      | 7                          | 8                |                  | 9                 |                      | 10                      | )              | Grade (Right)                  | C       |  |  |  |  |  |
|       | Avg.Score                                                                                                                  |                                                                          |         |               |      | 0.000                                                                             |                  |       |        |                                             |      |                            |                  |                  | ·····             |                      |                         |                |                                |         |  |  |  |  |  |
|       |                                                                                                                            | Poor                                                                     |         | r             |      | rginal                                                                            |                  | GR    |        | UTION C                                     |      |                            |                  |                  | imal              |                      |                         | -              |                                |         |  |  |  |  |  |
|       | nk vegetation                                                                                                              |                                                                          |         | Less Ihan     |      | streambank                                                                        |                  | +     |        | mbank veg                                   |      | 75-90%                     | es or            | ture tr          |                   |                      | >90% pla                | h              | 6b. Riparian                   |         |  |  |  |  |  |
|       | lly of pasture                                                                                                             |                                                                          |         |               |      | e vegetation of mixed grasses                                                     |                  |       |        | along char                                  |      |                            |                  |                  |                   |                      | hrubs, pra              |                | Zone                           | ł       |  |  |  |  |  |
|       | ibs; low plant<br>ed with gullies                                                                                          |                                                                          |         |               |      | young tree or<br>cies; breaks                                                     |                  |       |        | ; disruption                                |      |                            | from             |                  |                   | ine intac<br>ing/mov | nparian za              |                | Vegetation                     |         |  |  |  |  |  |
|       |                                                                                                                            | ng its leng                                                              |         |               | es   | th some gullies                                                                   | uent wil         |       |        | melers,                                     |      |                            |                  |                  |                   |                      | 3.41                    |                | Protection/                    |         |  |  |  |  |  |
|       |                                                                                                                            |                                                                          |         |               | rs.  | very 50 meters.                                                                   | scars e          | a     |        |                                             |      |                            |                  |                  |                   |                      |                         | s              | Completenes                    | ľ       |  |  |  |  |  |
|       |                                                                                                                            |                                                                          |         |               |      |                                                                                   |                  |       |        |                                             |      |                            |                  |                  |                   |                      |                         |                |                                |         |  |  |  |  |  |
|       |                                                                                                                            | 1                                                                        |         | 2             |      | 3                                                                                 | 4                |       |        | 6                                           |      | 7                          | 8                | r                | 9                 |                      | 10                      | _              | Grade (Left)                   | -       |  |  |  |  |  |
|       | 0                                                                                                                          | 1                                                                        |         | 2             |      | 3                                                                                 | 4                | 1-    |        | 6                                           | -+   | 7                          | 8                |                  | 9                 |                      | 10                      | 5              | Grade (Right)                  |         |  |  |  |  |  |
| 2     | Avg.Score                                                                                                                  |                                                                          |         | •             |      | <u></u>                                                                           |                  |       |        |                                             |      |                            |                  | <b>.</b>         |                   | *                    |                         | ·              | X                              | <b></b> |  |  |  |  |  |
|       | 1                                                                                                                          |                                                                          |         |               |      |                                                                                   | -                | _     |        | ~                                           |      |                            |                  |                  |                   |                      |                         |                |                                |         |  |  |  |  |  |
| 0,187 | ssible Score                                                                                                               | stal Pos                                                                 | ore/T   | = Total Scr   | ay = | inacily Index                                                                     | on Ca            | ~ *** |        |                                             |      |                            |                  |                  |                   |                      |                         |                |                                | 1       |  |  |  |  |  |

| /ARIABLES | 1 EL OW DE OF        |                                      |                            |                | 05\05\200     |                                  | Highway 3                             | a Bridge       | ·····                                  |             |                     |                                   | SCORE |
|-----------|----------------------|--------------------------------------|----------------------------|----------------|---------------|----------------------------------|---------------------------------------|----------------|----------------------------------------|-------------|---------------------|-----------------------------------|-------|
|           | 1 FLOW REGI          |                                      | Perennial                  |                | Intermitte    | ent w/ Pere                      | nnial Pools                           | Inter          | mittent                                |             | Epheme              | ral                               | -     |
|           | Grade                | 10                                   | 9                          | 8              | 7             | 5                                | 5                                     | 4              | 3                                      | 2           | 1                   | 0                                 | 4     |
|           |                      | SUBSTRATE/A                          |                            |                |               |                                  |                                       |                |                                        |             |                     |                                   | -     |
|           | 2 CT IL AURAL        |                                      | Optimal                    |                | 1             | Suboptima                        |                                       | Mar            | ginal                                  |             | Poor                |                                   | -     |
|           |                      | Within stream                        |                            |                |               | am bed, 30-5                     |                                       | Within stream  | n hed, 10-30%                          |             |                     | pital features                    | 1     |
|           |                      | coverage by s<br>favorable for sti   |                            |                |               | nabital feature<br>faunal coloni |                                       |                | stable habitot<br>able for stream      |             |                     | tat is obvious;<br>or lacking;    |       |
|           |                      | and/or fish/amph                     | ibian cover. I             | Aost habitat   | fish/amphi    | blan cover. N                    | Aany habitat                          | faunal colon   | ization and/or                         | concrete    | lined chan          | nels. Habitat                     |       |
|           |                      | features non lu<br>include snags, s  |                            |                |               | t transient. (S                  |                                       |                | n cover; habitat<br>ay be less than    |             |                     | rried or lacking,<br>nay be flat, | ·     |
|           | ]                    | banks, roots, col                    | bble, rocks, pe            | ersistent leaf |               | components                       |                                       | desirable, sul | bstrate may be                         | onacine     |                     | toj ne not.                       |       |
|           |                      | packs, pools ar<br>habitat at a sta  |                            |                |               |                                  |                                       |                | sturbed. (See                          |             |                     |                                   |       |
|           |                      | 1120121 21 2 30                      | ige to anow of             | nomeanon       |               |                                  |                                       |                | mponents.)                             |             |                     |                                   |       |
|           |                      |                                      |                            |                |               |                                  |                                       |                |                                        |             |                     |                                   |       |
|           |                      |                                      |                            |                |               |                                  |                                       |                |                                        |             |                     |                                   |       |
|           |                      |                                      |                            |                |               |                                  | · · · · ·                             |                |                                        |             |                     | ·····                             |       |
|           | Grade                | 10                                   | 9                          | 8              | 1 /           | 6                                | 5                                     | 4              | 3                                      | 2           | <u> . 1</u>         | 0                                 | 11    |
| :         | 3 STREAM BO          | TTOM SUBSTR                          | ATE: Pool S                | ubstrate C     | haracterizat  | ion                              |                                       |                | ·                                      |             |                     |                                   | 1     |
|           |                      |                                      | Optimal                    |                |               | Suboptima                        |                                       |                | rginal                                 |             | Poor                |                                   | ]     |
|           |                      | Mixture of substr<br>and firm sand p |                            |                |               | soft sand, m                     |                                       |                | r or sand bollom;<br>rool mal; no      |             |                     | drock, no root<br>vegetation.     |       |
|           |                      |                                      | vegetation co              |                |               | i submerged                      |                                       |                | i vegetation.                          | 11141 01 3  | oomorgeo            | vegennen.                         |       |
|           |                      |                                      |                            |                |               | present.                         |                                       |                |                                        |             |                     |                                   |       |
|           | (                    |                                      |                            |                |               |                                  |                                       |                |                                        |             |                     |                                   |       |
|           | Grade                | 10                                   | 9                          | 8              |               | 6                                | 5                                     | 4              | 3                                      | 2           | 1 1                 | 0                                 |       |
|           | Grade                | 10                                   | <u>_</u>                   | <u> </u>       | ·             | 1                                | 1 0                                   | 44             | 1                                      | <u> </u>    | <u> </u>            |                                   |       |
|           | 4 POOL VARIA         |                                      |                            |                |               |                                  |                                       |                |                                        |             |                     |                                   | ]     |
|           |                      | Even mix of lar                      | Optimal                    | mo doop        | Majarity      | Suboptima<br>of pools large      |                                       |                | rginal<br>Is much more                 | Moloriu e   | Poor                | hall-shallow or                   | 4     |
|           |                      | small-shallow, s                     |                            |                | Majoray c     | few shallow                      |                                       |                | an deep pools                          | majority o  | pools abs           |                                   |       |
|           |                      |                                      |                            |                |               |                                  |                                       |                |                                        |             |                     |                                   |       |
|           |                      |                                      |                            |                |               |                                  |                                       |                |                                        | 1           |                     |                                   |       |
|           |                      |                                      |                            |                |               |                                  |                                       |                |                                        |             |                     |                                   |       |
|           | Grade                | 10                                   | 9                          | 8              | 7             | 6                                | 5                                     | 4              | 3                                      | 2           | 1                   | 0                                 | 1     |
|           |                      | DEPOSITION/SC                        |                            | 1              |               |                                  |                                       |                | -1                                     | 1           |                     |                                   |       |
|           |                      | <5% of channel l                     | Optimal                    |                | E 20112 - 11- | Suboptime                        |                                       |                | rginal                                 |             | Poor                | bollom in a state                 | _     |
|           |                      |                                      | deposition.                | oy scoul of    | Scour at co   | nstrictions and                  | weive grades                          |                | led by scour or<br>losits and scour of |             |                     | yearlong. Pool                    |       |
|           |                      |                                      |                            |                | steepen.      | Some deposit                     | ion in pools                          |                | constrictions and<br>filling of pools  |             |                     | due to heavy<br>sive scouring     |       |
|           |                      | ĺ                                    |                            |                |               |                                  |                                       | Benda, Gon     | initig of pools                        |             |                     |                                   |       |
|           |                      |                                      |                            |                |               |                                  |                                       |                |                                        |             |                     |                                   | 1     |
|           | Grade                | 10                                   | 9                          | 8              | 7             | 6                                | 5                                     | 4              | 3                                      | 2           | 1 1                 | 0                                 |       |
|           |                      |                                      |                            |                |               |                                  | · · · · · · · · · · · · · · · · · · · |                |                                        |             |                     |                                   |       |
| I         | 6 CHANNEL F          |                                      | Optimal                    |                |               | Suboptima                        |                                       |                | rginal                                 | ·····       | Poor                |                                   | -     |
|           |                      | Water reaches                        |                            | ooth lower     | Water fills   | >75% of the                      |                                       |                | 25-75% of the                          | Very little |                     | e channel and                     | -     |
|           |                      | banks: <5%                           | of channel sul             | ostrate is     | <25% (        | of channel su                    | bstrate is                            |                | nel and/or riffle                      | mostly pre  |                     | inding pools; o                   | r     |
|           |                      |                                      | exposed                    |                |               | exposed                          |                                       | substrates are | mostly exposed                         | 1           | stream is           | ary                               |       |
|           |                      | 1                                    |                            |                | 1             |                                  |                                       | 1              |                                        |             |                     |                                   | 1     |
|           |                      |                                      |                            |                |               |                                  |                                       |                |                                        |             |                     |                                   |       |
|           | Grade                | 10                                   | 9                          | 8              | 7             | 6                                | 5                                     | 4              | 3                                      | 2           | 1                   | 0                                 | 1     |
|           | 7 CHANNEL A          |                                      | Ontimal                    |                | 1             | Cubent                           |                                       |                | (m) m l                                | 1           | Der                 |                                   | 4     |
|           |                      | Channelization                       | Optimal<br>, alteration, o | r dredoino     | Some #        | Suboptima<br>eration or cha      |                                       |                | rginal channelization                  | Banks sho   | Poor<br>red with ta | abion, riprap, o                  | 7     |
|           |                      | absent or min                        | imal; normal a             | ind stable     | prese         | n, usually ad                    | jacent to                             | may be         | extensíve;                             | concrete.   | Concrete            | or riprap lined                   |       |
|           |                      | stream meand<br>stormwater in        |                            |                |               | ures, (such a<br>or culverts);   |                                       | embankments    | including spoil                        |             |                     | eam babital<br>sy slormwater r    |       |
|           |                      | i and the second second              |                            | , -increitar   | past altera   | tion, (I.e., chi                 | annelization)                         | present on bol | th banks; normal                       | other in    | puts. Ove           | r 80% of the                      |       |
|           |                      | J                                    |                            |                |               | esent, but str<br>ly have recov  |                                       |                | meander patiern                        | stre        | ham reach           | altered.                          |       |
|           |                      |                                      |                            |                |               | n is not prese                   |                                       |                | ered. Alleration<br>or inputs may be   |             |                     |                                   |       |
|           |                      |                                      |                            |                |               | from stormwi                     |                                       | extensive. 40  | -80% of stream                         | 1           |                     |                                   |       |
|           |                      |                                      |                            |                |               |                                  |                                       | i reach        | allered,                               | L           |                     |                                   |       |
|           |                      |                                      |                            |                |               | inputs.                          |                                       | 1              |                                        | 1           |                     |                                   |       |
|           |                      |                                      |                            |                |               | inpuls.                          |                                       |                |                                        |             |                     |                                   |       |
|           |                      |                                      |                            |                |               | inpuls.                          |                                       |                |                                        |             |                     |                                   |       |
|           | Grade                | 10                                   | 9                          | 8              | 7             | inputs.                          | 5                                     | 4              | 3                                      | 2           | ]1                  | 0                                 | 1     |
|           | Grade<br>8 CHANNEL S |                                      | 9                          | 8              |               | -                                | 5                                     | 4              | 3                                      | 2           | ]1                  | 0                                 | 1     |

 $\bigcirc$ 

|    |                | The bends in the<br>stream length 3 to<br>was in a straigh<br>braiding is consi-<br>plains and other                                                        | o 4 limes lon<br>I line, (Note<br>dered norma<br>r low-lying a                                               | nger than il il<br>e - channel<br>al in coastal<br>reas, This                                 | stream l                                                                       | ength 2 to 3 t<br>it was in a str                                                                                |                                                                                                                                                  | increase the<br>times longer to                                                                                                                                                           | in the stream<br>stream 1 to 2<br>han if it was in a<br>ht line                                                                                                                                                                              |                                                                                                 | zed for a lon                                                                                        | vay has been<br>g distance                                                                               |                      | Barbo<br>al. 199<br>RBA #<br>Parso<br>al., 20                                                     |
|----|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------|---------------------------------------------------------------------------------------------------|
|    |                | parameter is no                                                                                                                                             | ot easily rate<br>areas).                                                                                    | ed in these                                                                                   |                                                                                |                                                                                                                  |                                                                                                                                                  |                                                                                                                                                                                           |                                                                                                                                                                                                                                              |                                                                                                 |                                                                                                      |                                                                                                          |                      | AUSR                                                                                              |
|    | Grade          | 10                                                                                                                                                          | 9                                                                                                            | 8                                                                                             | 7                                                                              | 6                                                                                                                | 5                                                                                                                                                | 4                                                                                                                                                                                         | 3                                                                                                                                                                                                                                            | 2                                                                                               | 1                                                                                                    | 0                                                                                                        | 0                    |                                                                                                   |
| 9  | 9 BANK STAB    | ILITY (SCORE EA                                                                                                                                             | CH BANK                                                                                                      | )                                                                                             |                                                                                |                                                                                                                  |                                                                                                                                                  |                                                                                                                                                                                           | ty                                                                                                                                                                                                                                           |                                                                                                 |                                                                                                      |                                                                                                          |                      |                                                                                                   |
|    |                | Banks stable; evi                                                                                                                                           | Optimal                                                                                                      | sion or bank                                                                                  | htodecate                                                                      | Suboptim                                                                                                         | al<br>equent, small                                                                                                                              |                                                                                                                                                                                           | rginal<br>stable; perennial                                                                                                                                                                                                                  | Linstable: r                                                                                    | Poor                                                                                                 | vegetation at                                                                                            |                      | Barbo                                                                                             |
|    |                | failure absent or<br>affected), perennia<br>no raw or undercu<br>outside of mea<br>recently exposed i                                                       | minimal; (<<br>al vegetation<br>t banks (son<br>inder bends                                                  | 5% of bank<br>1 to waterlino;<br>ne prosion on<br>O.K.); no                                   | areas of e<br>5-30% of I<br>mino<br>undercutti<br>waterline                    | rosion mostly<br>bank in reach<br>r erosion and<br>ag; perennial<br>e in most place                              | healed over.<br>has areas of<br>or bank<br>vegetation to                                                                                         | vegetation to t<br>(mainly scourd<br>lateral erosion<br>hard point<br>outcrops) an<br>elsewhere; 30<br>reach has area<br>bank underc<br>exposed tree m<br>hairs commo                     | waterline sparse<br>of or stripped by<br>), bank held by<br>(frees, rock<br>d eroded back<br>+50% of bank in<br>as of erosion and<br>uting; recently<br>pots and fine rooi<br>n; high erosion<br>luming floods                               | waterline<br>banks; rec<br>common;<br>undercu<br>eroded are<br>along stra<br>obvious ba<br>bank | : severe cros<br>cently expose<br>tree falls and<br>it trees comm<br>eas; "raw" an<br>light sections | ion of both<br>ad tree roots<br>i/or severely<br>non; many<br>eas frequent<br>and bonds;<br>; 60-100% of |                      | al. 19<br>RBA<br>Parso<br>al., 20<br>AUSR<br>USAC<br>Norfol<br>Distric<br>2004<br>#3; Sc<br>and B |
| 1  | Grade          | 10                                                                                                                                                          | 9                                                                                                            | 8                                                                                             | 7                                                                              | 6                                                                                                                | 5                                                                                                                                                | 4                                                                                                                                                                                         | 3                                                                                                                                                                                                                                            | 2                                                                                               | 1                                                                                                    | 0                                                                                                        | 3                    | from<br>Hensi                                                                                     |
|    | Grade          | 10                                                                                                                                                          | 9                                                                                                            | 8                                                                                             | 7                                                                              | 6                                                                                                                | 5                                                                                                                                                | 4                                                                                                                                                                                         | 3                                                                                                                                                                                                                                            | 2                                                                                               | Avg.Score                                                                                            | 0                                                                                                        | 2                    |                                                                                                   |
| 10 | 10 VEGETATIV   | E PROTECTION                                                                                                                                                | SCORE F                                                                                                      | ACH BANK                                                                                      |                                                                                |                                                                                                                  |                                                                                                                                                  |                                                                                                                                                                                           |                                                                                                                                                                                                                                              |                                                                                                 |                                                                                                      |                                                                                                          | 1                    |                                                                                                   |
|    |                | (                                                                                                                                                           | Optimal                                                                                                      |                                                                                               | 70.008                                                                         | Suboptim                                                                                                         |                                                                                                                                                  |                                                                                                                                                                                           | rginal                                                                                                                                                                                                                                       | Loop that                                                                                       | Poor                                                                                                 | ntraamhank                                                                                               | 1                    | Bache                                                                                             |
|    |                | More than 90% of<br>and immediate rij<br>native vegeta<br>understory s<br>macrophytes; veg<br>grazing or mowing<br>almost all plants a                      | barian zones<br>lion, includis<br>hrubs, or no<br>etative dism<br>g minimat or                               | s covered by<br>ng trees,<br>inwoody<br>iption through<br>not evident;                        | covered<br>one cla<br>represen<br>not aff<br>potential<br>than one             | by native ver<br>ass of plants<br>led; disruption<br>fecting full pla                                            | is not well-<br>n evident but<br>int growth<br>extent; more<br>ptential plant                                                                    | surfaces cover<br>disruption obv<br>bare soil or o<br>vegetation cor<br>one-half of th                                                                                                    | ne streambank<br>ed by vegelation<br>nous; patches of<br>dosely cropped<br>mmon; less than<br>e potential plant<br>pht remaining.                                                                                                            | surfaces<br>disruption<br>is very hi<br>removed t                                               | covered by<br>of streambar<br>gh; vegetatio                                                          | nk vegetation<br>In has been<br>ers or less in                                                           |                      | Barbo<br>al. 19<br>RBA 1<br>Parso<br>al., 20<br>AUSF<br>KDWI<br>2000;                             |
|    |                |                                                                                                                                                             |                                                                                                              |                                                                                               |                                                                                |                                                                                                                  |                                                                                                                                                  |                                                                                                                                                                                           |                                                                                                                                                                                                                                              |                                                                                                 | - <del>r</del>                                                                                       |                                                                                                          |                      | Peter                                                                                             |
|    | Grade<br>Grade | 10                                                                                                                                                          | 9                                                                                                            | 8                                                                                             | 7                                                                              | 6                                                                                                                | 5                                                                                                                                                | 4                                                                                                                                                                                         | 3                                                                                                                                                                                                                                            | 2                                                                                               | 1<br>1<br>Avg.Scor                                                                                   | 0<br>0                                                                                                   | 1                    |                                                                                                   |
| 11 | 11 RIPARIAN Z  | ONE (SCORE EA                                                                                                                                               |                                                                                                              | )                                                                                             | ······                                                                         |                                                                                                                  |                                                                                                                                                  |                                                                                                                                                                                           |                                                                                                                                                                                                                                              |                                                                                                 |                                                                                                      |                                                                                                          | 1                    |                                                                                                   |
|    |                | Width of ripatian<br>activities (I.e., par<br>cuts, lawns, or cu                                                                                            | king lots, roi                                                                                               | adbeds, clear-                                                                                | human ac                                                                       |                                                                                                                  | 12-18 meters<br>mpacted zone                                                                                                                     | Width of ripa<br>meters; huma                                                                                                                                                             | rginal<br>nian zone 6-12<br>n activilies have<br>ne a great deal.                                                                                                                                                                            | little or no.                                                                                   | Poor<br>riparian zone<br>riparian vege<br>numan activit                                              | dation due to                                                                                            |                      | Barbo<br>al., 11<br>RBA<br>Parso<br>al., 20                                                       |
|    | Grade          | 10                                                                                                                                                          | 9                                                                                                            | 8                                                                                             | 7                                                                              | 6                                                                                                                | 5                                                                                                                                                | 4                                                                                                                                                                                         | 3                                                                                                                                                                                                                                            | 2                                                                                               | 1 1                                                                                                  | 1 0                                                                                                      | 3                    | AUSF                                                                                              |
|    | Grade          | 10                                                                                                                                                          | 9                                                                                                            | 8                                                                                             | 7                                                                              | 6                                                                                                                | 5                                                                                                                                                | 4                                                                                                                                                                                         | 3                                                                                                                                                                                                                                            | 2                                                                                               | 1 1                                                                                                  | 0                                                                                                        | 1                    | ]                                                                                                 |
|    |                |                                                                                                                                                             |                                                                                                              |                                                                                               |                                                                                |                                                                                                                  |                                                                                                                                                  |                                                                                                                                                                                           |                                                                                                                                                                                                                                              |                                                                                                 | Avg.Scor                                                                                             | e;                                                                                                       | 2                    |                                                                                                   |
| 12 | 12 RIPARIAN H  | ABITAT CONDIT                                                                                                                                               | ION (SCO)<br>Optimal                                                                                         | RE EACH B/                                                                                    | ANK)                                                                           | Suboptim                                                                                                         |                                                                                                                                                  | 1 149                                                                                                                                                                                     | rginal                                                                                                                                                                                                                                       | 1                                                                                               | Poor                                                                                                 |                                                                                                          |                      | Norfo                                                                                             |
|    |                | Tree stratum (db)<br>>60% tree canopy<br>layers may ini<br>herbaccous, a<br>mosses/lichens an<br>lhe high end o<br>additional layers s<br>end if ≤1 additio | h>3 inches)<br>cover. (Ad<br>clude: saplin<br>nd leaf litter<br>id woody de<br>f Excellent r<br>are present. | Iditional forest<br>ing, shrub,<br>including<br>bris.) Score at<br>ange if >2<br>Score at low | with 30%<br>(See<br>examples<br>Score at t<br>if ≥2 ad<br>present<br>additiona | um (dbh>3 in<br>to 60% free<br>Excollent Ca<br>of additional<br>he high end<br>iditional fores<br>t. Score at ic | ches) present<br>canopy cover,<br>legory for<br>forest layers,<br>of Good range<br>it layers are<br>w end if ≤1<br>s are present.<br>/ilh stomps | Tree stratum<br>present, with <<br>cover. (See E<br>for example<br>forest layers.)<br>end of Fa<br>additional lay<br>Score at<br>additional lay<br>OR area co<br>maintained<br>dense herb | (db)r-3 inches)<br>30% inches)<br>30% inches)<br>30% inches)<br>30% inches<br>Score at the high<br>range if ≥2<br>ers are present<br>low end if ≤1<br>ers are present<br>on sists of non-<br>and naturalized<br>accous and/or<br>vegetation. | surface<br>lands, culv<br>maintai<br>denuded                                                    | slum absent;<br>s, croplands,                                                                        | mine spoil<br>is, mowed and<br>ous areas,<br>lively grazed                                               | 3                    | Form                                                                                              |
|    | Grade          | 10<br>10 riparian areas a                                                                                                                                   | 9<br>Iong each                                                                                               | 8<br>stream bank                                                                              | 7                                                                              | 6<br>dition Cater                                                                                                | 5<br>Tories and C                                                                                                                                | 4                                                                                                                                                                                         | 3<br>es using the at                                                                                                                                                                                                                         | 2<br>Dive descri                                                                                | 1<br>iptors                                                                                          | 0<br>Ensure I                                                                                            | Below<br>he sums of  |                                                                                                   |
|    | 2. Determin    | e square footage<br>%Riparian Area                                                                                                                          | for each b                                                                                                   | by measuring                                                                                  | g or estim                                                                     | ating length                                                                                                     | and width,<br>h) and Scor                                                                                                                        | Land Use GIS<br>e for each ripa                                                                                                                                                           | maps may be                                                                                                                                                                                                                                  | used for th<br>n the block                                                                      | nis,                                                                                                 | %Ripar<br>equ                                                                                            | ian Blocks<br>al 100 |                                                                                                   |
|    | Right Bank     | %Riparian Area<br>Score                                                                                                                                     | a di serie ini<br>a di                                                                                       |                                                                                               |                                                                                |                                                                                                                  |                                                                                                                                                  |                                                                                                                                                                                           |                                                                                                                                                                                                                                              |                                                                                                 | 2                                                                                                    | 100                                                                                                      |                      | -                                                                                                 |
|    | THUR DANK      | SubCl                                                                                                                                                       |                                                                                                              | 0                                                                                             |                                                                                | 0                                                                                                                | ·····                                                                                                                                            |                                                                                                                                                                                           | 0                                                                                                                                                                                                                                            |                                                                                                 | 2                                                                                                    | 1                                                                                                        | L                    | 1                                                                                                 |
|    | L              | Managine Are-                                                                                                                                               | ļ                                                                                                            |                                                                                               | ļ                                                                              | 60                                                                                                               |                                                                                                                                                  |                                                                                                                                                                                           | 40                                                                                                                                                                                                                                           | 1                                                                                               |                                                                                                      | 100                                                                                                      | <u></u>              | -                                                                                                 |
|    | Left Bank      | %Riparian Area<br>Score                                                                                                                                     |                                                                                                              |                                                                                               |                                                                                | 5                                                                                                                |                                                                                                                                                  |                                                                                                                                                                                           | 3                                                                                                                                                                                                                                            | 1                                                                                               |                                                                                                      | 100                                                                                                      | 1                    | 1                                                                                                 |
|    |                | SubCl                                                                                                                                                       | 1                                                                                                            | 0                                                                                             | L                                                                              | 3                                                                                                                |                                                                                                                                                  | L                                                                                                                                                                                         | 1.2                                                                                                                                                                                                                                          | SubCI-10                                                                                        | 0<br>%RA*Score                                                                                       | C 0 011                                                                                                  |                      | -                                                                                                 |
|    |                |                                                                                                                                                             |                                                                                                              |                                                                                               |                                                                                |                                                                                                                  |                                                                                                                                                  |                                                                                                                                                                                           |                                                                                                                                                                                                                                              | 134001=[                                                                                        | ALCOLE WAR                                                                                           | 3 1.011                                                                                                  | 1                    | .)                                                                                                |
|    |                |                                                                                                                                                             |                                                                                                              |                                                                                               |                                                                                |                                                                                                                  |                                                                                                                                                  |                                                                                                                                                                                           |                                                                                                                                                                                                                                              | Rt Bank (                                                                                       | CI>                                                                                                  | 4.2                                                                                                      | Cl<br>3.1            | ]                                                                                                 |

(Ang

## ATTACHMENT C

## BRIEF DESCRIPTION OF THE ECOLOGY FOR THE IDENTIFIED SPECIES

## **INSECTS**

Mayflies (Ephemeropterans) (all larvae identified)

Baetidae are widespread and abundant occurring in a variety of streams and also in permanent and temporary ponds or littoral zones (areas of shallow water where light penetrates to the bottom allowing for rooted plant growth) of lakes.

Caenidae are widespread and common in a variety of lotic (running or flowing streams) and lentic (standing water) habitats, including slow-moving streams of all sizes, spring seeps, marshes, swamps, ponds, and lakes. They frequent sediments and often are partially covered with silt. They are generally more tolerant of lower levels of dissolved oxygen.

Heptageniidae are widespread and abundant in streams, wave-swept shorelines of lakes, or in vernal (in the Spring) ponds adjacent to streams. They typically inhabit rocks, wood, debris, and other strata to which they cling.

Flies, midges, and mosquitoes (Dipterans) (all larvae identified)

Ceratopogonidae or biting midges typically live in moist terrestrial habitats; however, many species do occur in aquatic habitats that include marshes, swamps, ponds, lakes, and streams.

Chironomidae or midges are the largest family of aquatic insects. They inhabit all types of permanent and temporary aquatic habitats. Larvae are an extremely important part of the aquatic ecosystem serving as prey for other organisms. Larvae are quite tolerant of lowered levels of dissolved oxygen including some species surviving in areas where oxygen levels are undetectable (blood worms – which were identified at all sampling locations). The larvae are primarily herbivores and detritivores feeding on fine bottom particles.

Culicidae or mosquitoes are common and widespread usually occurring in shallow, nonflowing or semi-flowing habitats such as swamps, shallow temporary or permanent ponds and marshes, and heavily vegetated margins of lakes and streams. They are not found in moving water or water subjected to wave action. The reason for this is that they obtain oxygen from use of breathing tubes at the water surface and wave action and current disrupt the water surface inhibiting their ability to obtain oxygen. Mosquitoes often dominate the insect community of temporary ponds and marshes, especially those that flood in spring and summer. The mosquito larvae feed on organic debris and microorganisms.

Dolicopodidae or long-legged flies develop in a wide variety of lotic and lentic habitats. Little information is available for this family.