	60'							65'
					LT LITTI		1111S	
		Tick (In the second	The Party Party of the	Part Ar
	1 2 3 6 7 8 9	* 1 8 3 4 8 76 V	1. La contra de la c			4 59 6 7 8 9	S 1 2 3 4 5)	
10	65'	ture of the	(HM 16430 Lake Relph	D.09-	9/15/16			70'
1								
1					1111111	1 1 Letters		
	BECOME COMES OF THE	CONTRACTOR OF STREET, CONTRACTOR		AND DECIDENTIAL				- Charles
2	1 1 1 1 1 1 1 1 1 1 1 1 1	· · · · · · · · · · ·			No. of Concession, Name of Con	<u> </u>	*	0. 7. 6. 6. 2. 5
	Row Weeks	* [22-3cther]	(Km 16420 Labe Ralph Hall	D-00	9/15/16	-	T PANT	S. C. S. O. L. M.
	70'							75'
	Carlo Martin Batter	and the second second	and a set of the second	A STATISTICS				
	A DESCRIPTION OF THE OWNER		- and the second				A STREET AND A STREET	The second
1		9 8 1 2 3 4 9 0	7 8 8 7 1 2			5 7 8 9	1 - 2 - 2 - 4 - 5 - 7	Carlos - Spins
				D-01 9.	112/16			acces mark
FNI PROJEC	т: СНМ16420	FREESE		U	RWD Lake Ralp	h Hall		
FILE:	T:\STUDY\GEO\Rock Core Photos							PLATE
DATE:	December 2016	4055 INTERNATIONAL PLAZA, STE 200			SAMPLE PHOTOGRA			D-02-4
PREPARED	MK	FORT WORTH, TX 76109			BORING D-0	2		

65' 						70'
			P 3 4 - P - P - P		· · · · · · · · · · · · · · · · · · ·	
A REAL PROVIDENCE		(HM 16400 LakeRalph Hall	D-03-	9/14/16		REAL REAL REAL REAL REAL REAL REAL REAL
FNI PROJECT: CHM: FILE: T:\STUDY\GEO\Rock Core P	hotos		UTRWI	D Lake Ralph Hall		PLATE
DATE: December PREPARED:	r 2016			PLE PHOTOGRAPHS		D-03-2
TREFAKEU:	MK		В	DRING D-03		

35'

40'

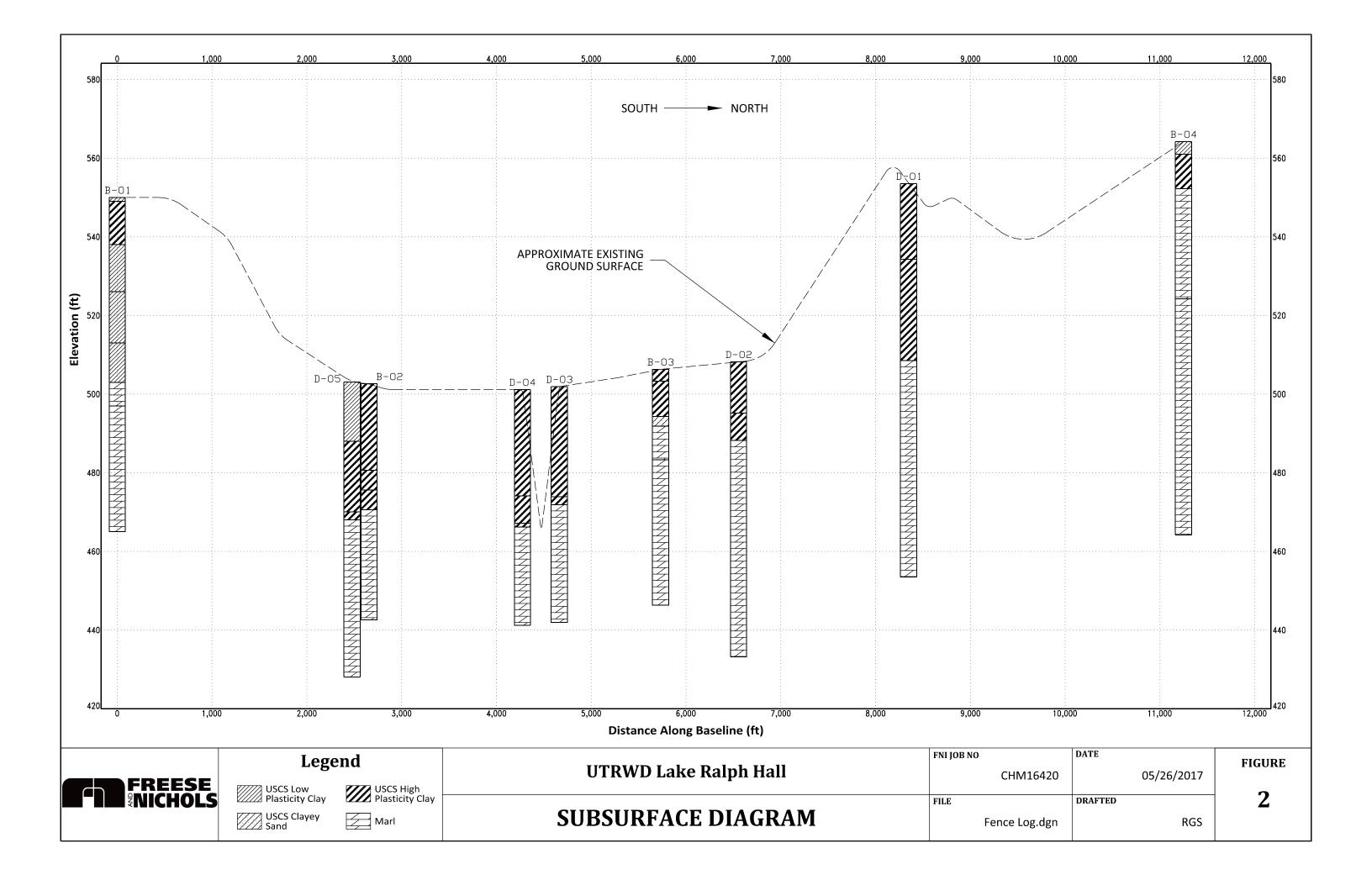
FILE:

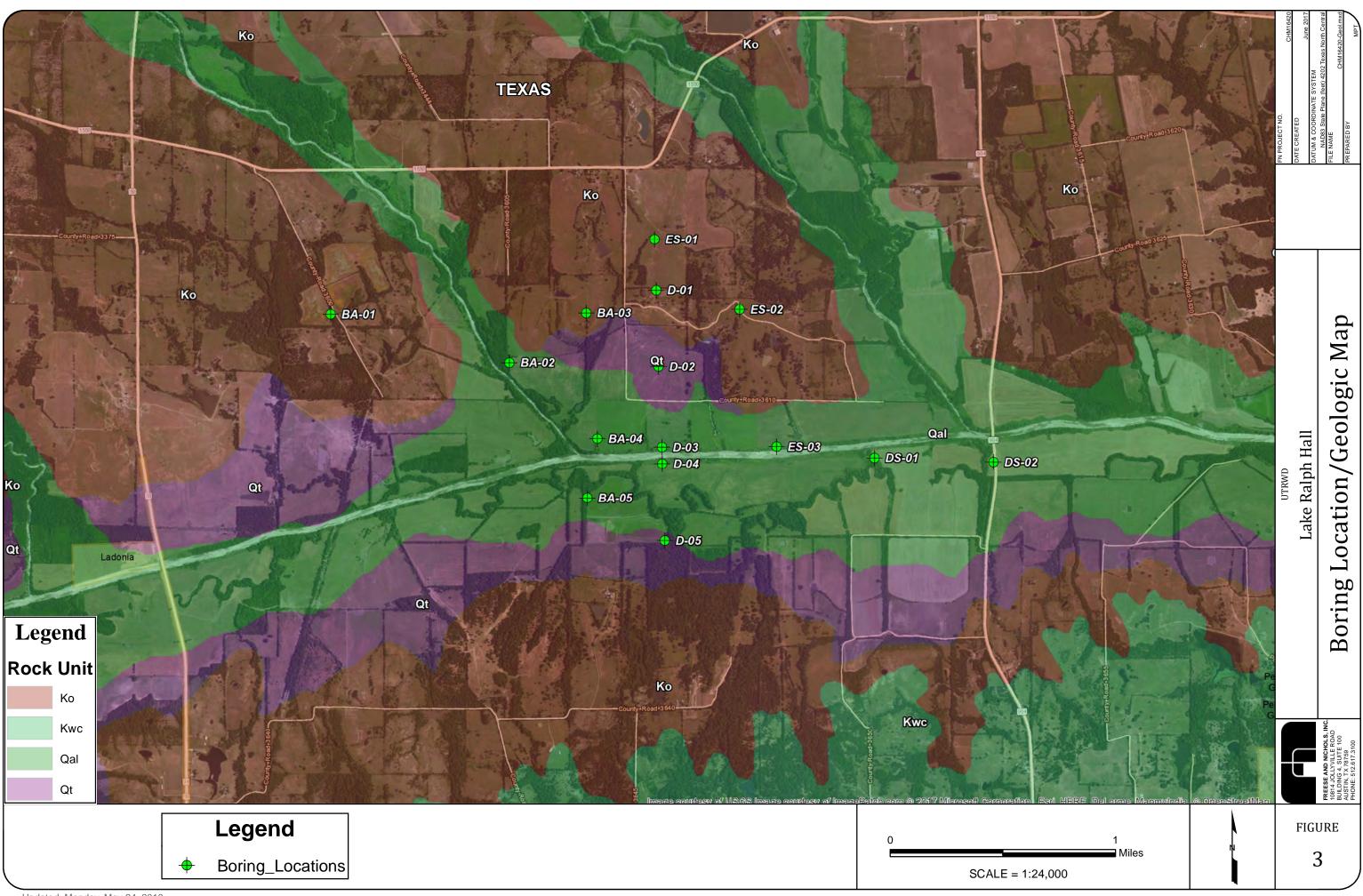
PREPARED:

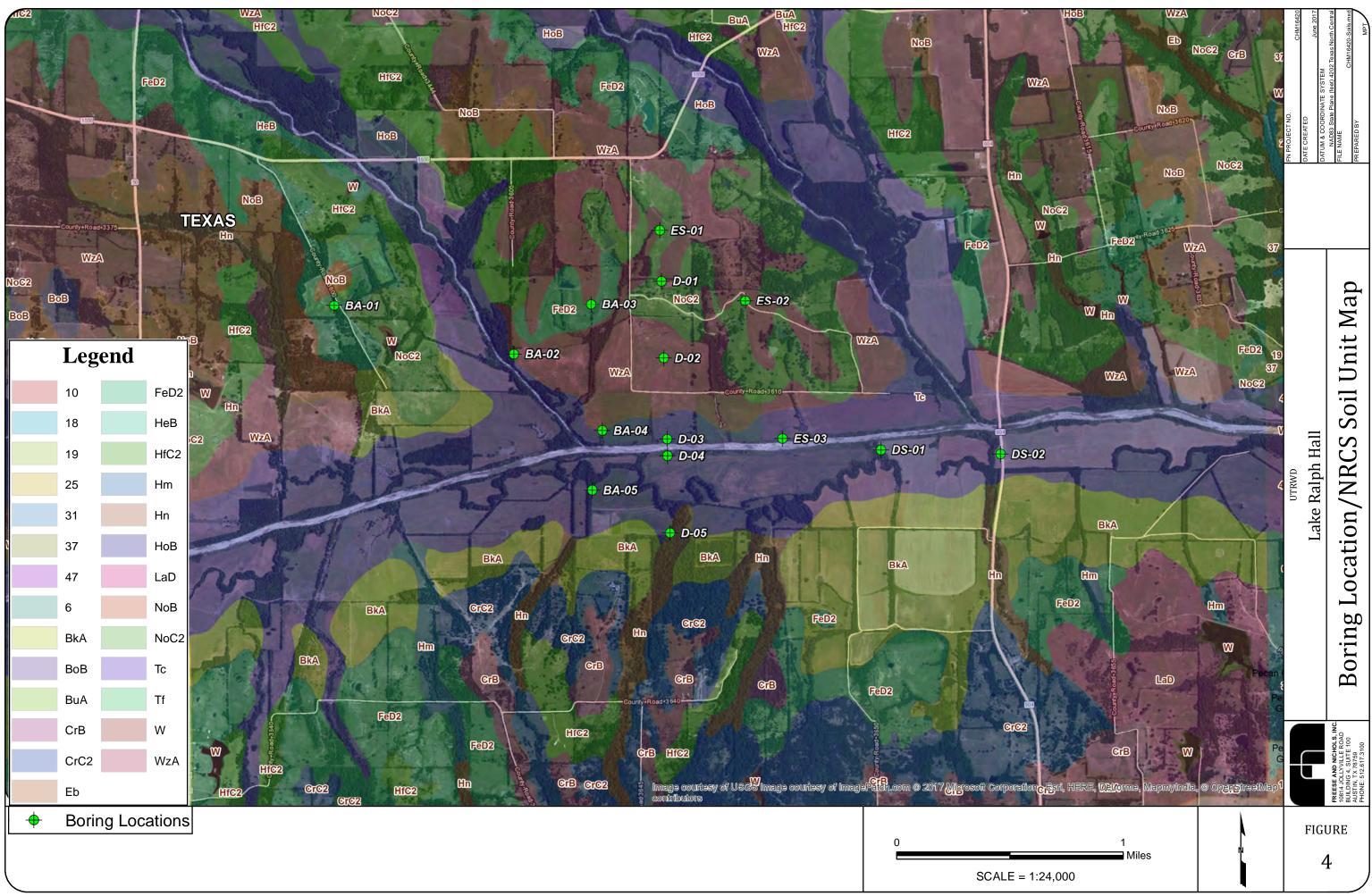
4055 INTERNATIONAL PLAZA, STE 200

FORT WORTH, TX 76109

MK


BORING D-05


D-05-2


APPENDIX A-2

SOIL AND ROCK STRATIGRAPHY FIGURES

Updated: Monday, May 24, 2010

NRCS SOIL UNIT MAP DESCRIPTIONS

County	Map Unit Symbol	Map Unit Soil Name
Lamar and Delta	10	Crockett loam, 1 to 3 percent slopes
Lamar and Delta	18	Elbon silty clay loam, 0 to 1 percent slopes, frequently flooded
Lamar and Delta	19	Ferris clay, 5 to 12 percent slopes, eroded
Lamar and Delta	25	Heiden-Ferris complex, 3 to 5 percent slopes
Lamar and Delta	31	Lamar clay loam, 5 to 8 percent slopes
Lamar and Delta	37	Normangee clay loam, 2 to 5 percent slopes, eroded
Lamar and Delta	47	Trinity clay, 0 to 1 percent slopes, occasionally flooded
Lamar and Delta	6	Benklin silt loam, 0 to 1 percent slopes
Fannin	BkA	Benklin silt loam, 0 to 1 percent slopes
Fannin	ВоВ	Bonham silt loam, 1 to 3 percent slopes
Fannin	BuA	Burleson clay, 0 to 1 percent slopes
Fannin	CrB	Crockett loam, 1 to 3 percent slopes
Fannin	CrC2	Crockett loam, 2 to 5 percent slopes, eroded
Fannin	Eb	Elbon silty clay loam, frequently flooded
Fannin	FeD2	Ferris clay, 5 to 12 percent slopes, eroded
Fannin	HeB	Heiden clay, 1 to 3 percent slopes
Fannin	HfC2	Heiden-Ferris complex, 2 to 6 percent slopes, eroded
Fannin	Hm	Hopco silt loam, occasionally flooded
Fannin	Hn	Hopco silt loam, frequently flooded
Fannin	НоВ	Houston Black clay, 1 to 3 percent slopes
Fannin	LaD	Lamar clay loam, 5 to 8 percent slopes
Fannin	NoB	Normangee clay loam, 1 to 3 percent slopes
Fannin	NoC2	Normangee clay loam, 2 to 5 percent slopes, eroded
Fannin	Тс	Tinn clay, 0 to 1 percent slopes, occasionally flooded
Fannin	Tf	Tinn clay, 0 to 1 percent slopes, frequently flooded
Fannin	W	Water
Fannin	WzA	Wilson silt loam, 0 to 1 percent slopes

APPENDIX A-3

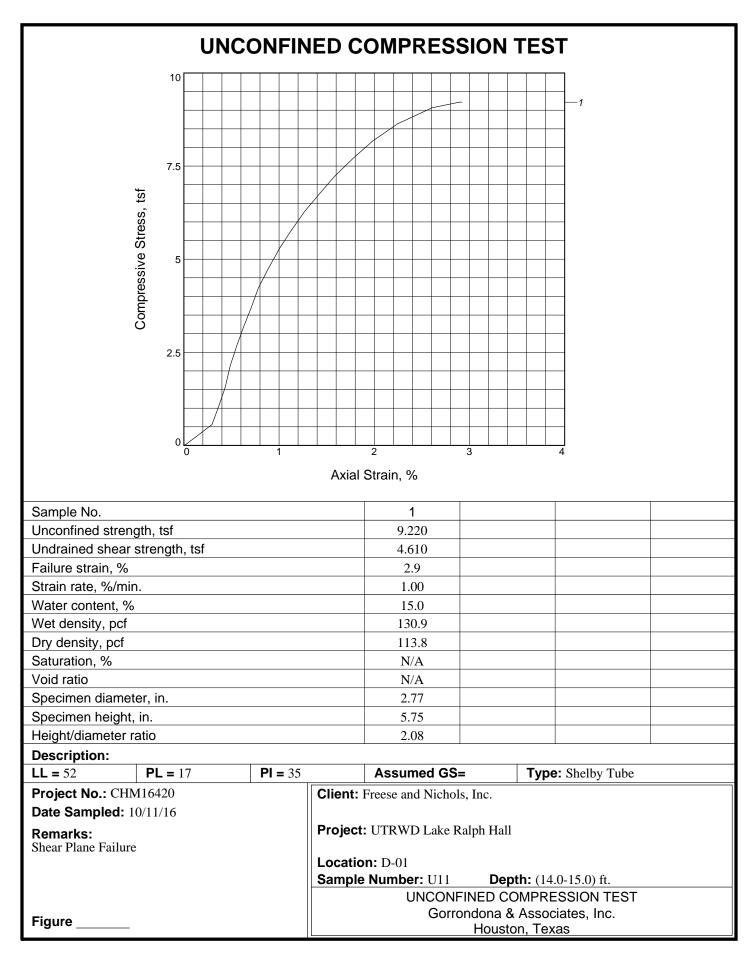
LABORATORY TEST DATA

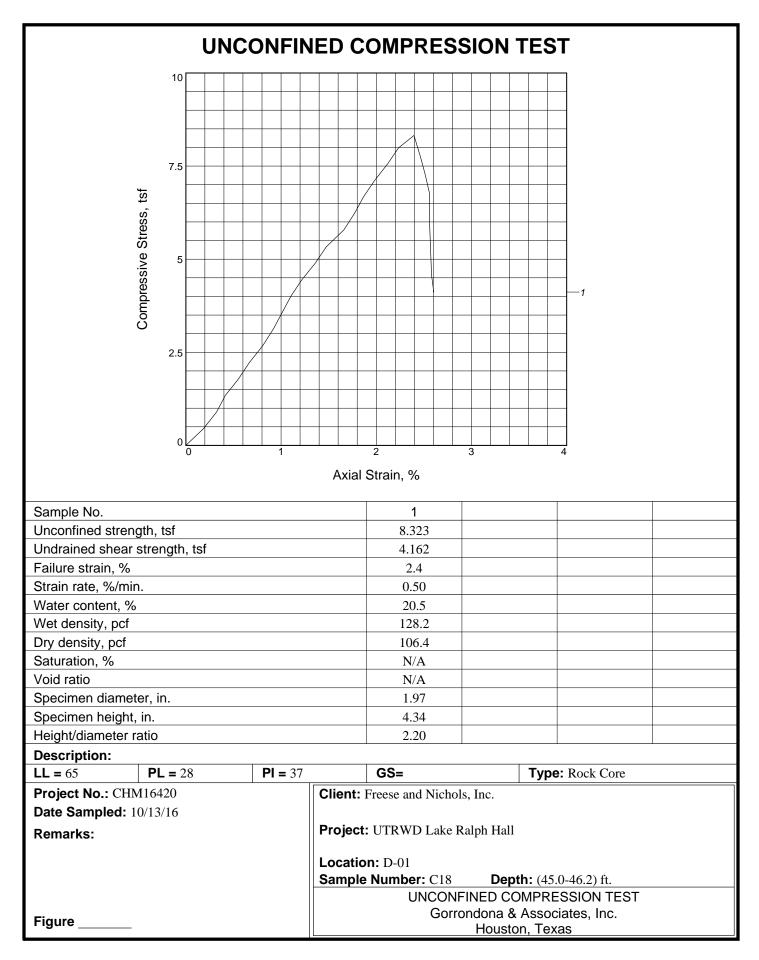
FREESE AND NICHOLS, INC. 4055 INTERNATIONAL PLAZA, SUITE 200 FORT WORTH, TX 76109-4895 (817) 735-7300

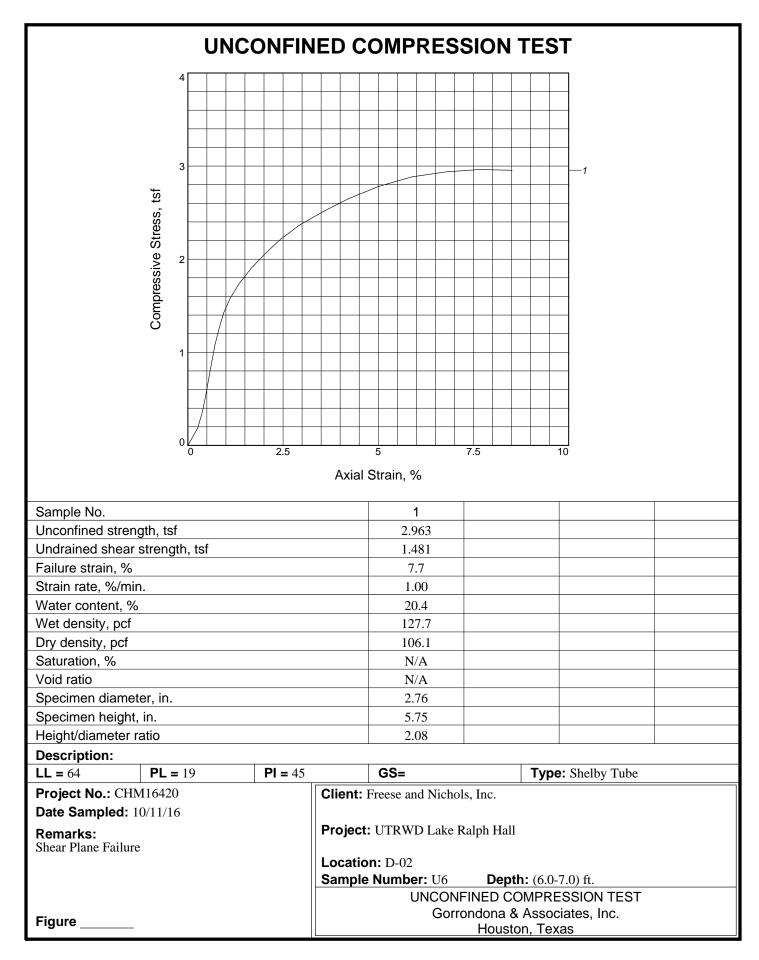
GEOTECHNICAL LABORATORY TEST SUMMARY

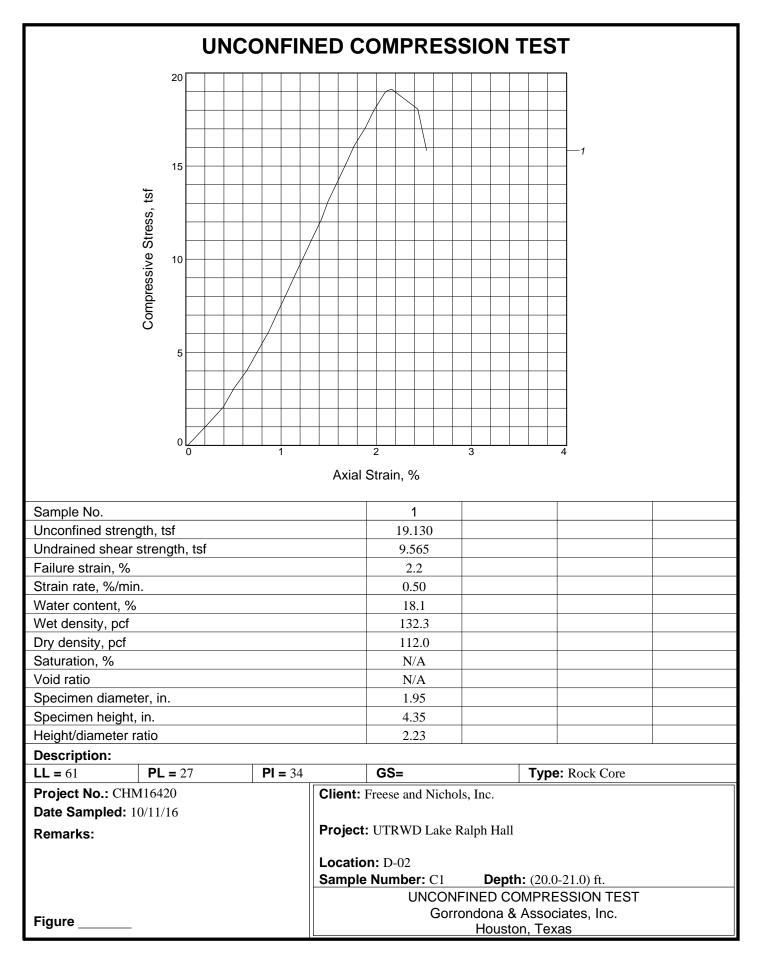
Borehole	Depth	USCS	Water Content [%]	Dry Density [pcf]	Percent Passing No. 200 Sieve	Liquid Limit	Plastic Limit	Plasticity Index	Unconfined Compressive Strength [tsf]	Strain at Failure [percent]	
BA-01	2	СН	13	121							
BA-01	6	СН	19								
DA 02			20	100							
BA-02 BA-02	4	СН СН	20 26	108	87	71	28	43			
BA-UZ	19	СП	20		87	/1	28	43			
BA-03	1	СН	14								
BA-03	5	СН	19	107							
BA-04	9	СН	22	103							
BA-05	5	СН СН	20 18	101							
BA-05 BA-05	8	CH	18	109 105							
BA-05	14	CL	22	105							
D-01	2	СН	17	108	98	73	24	49			
D-01	6	СН			96	61	21	40			
D-01	14	СН	15	114	95	52	17	35	9.2	2.9	
D-01	23	СН			98	67	21	46			
D-01	33	CH	10		96	70	27	43			
D-01 D-01	38 45	CH MARL	19 21	108 106	97	65	28	37	8.3	2.4	
D-01	45	IVIARL	21	106	97	60	28	37	8.3	2.4	
D-02	2	СН	14	114							
D-02	6	СН	20	106	88	64	19	45	3	7.7	
D-02	9	СН	23	103	92	54	29	25			
D-02	13	СН			97	74	25	49			
D-02	20	СН	18	112	54	61	27	34	19.1	2.2	
D-02	35	MARL	20	107	70	60	29	31			
					+						
					+ +		<u> </u>				

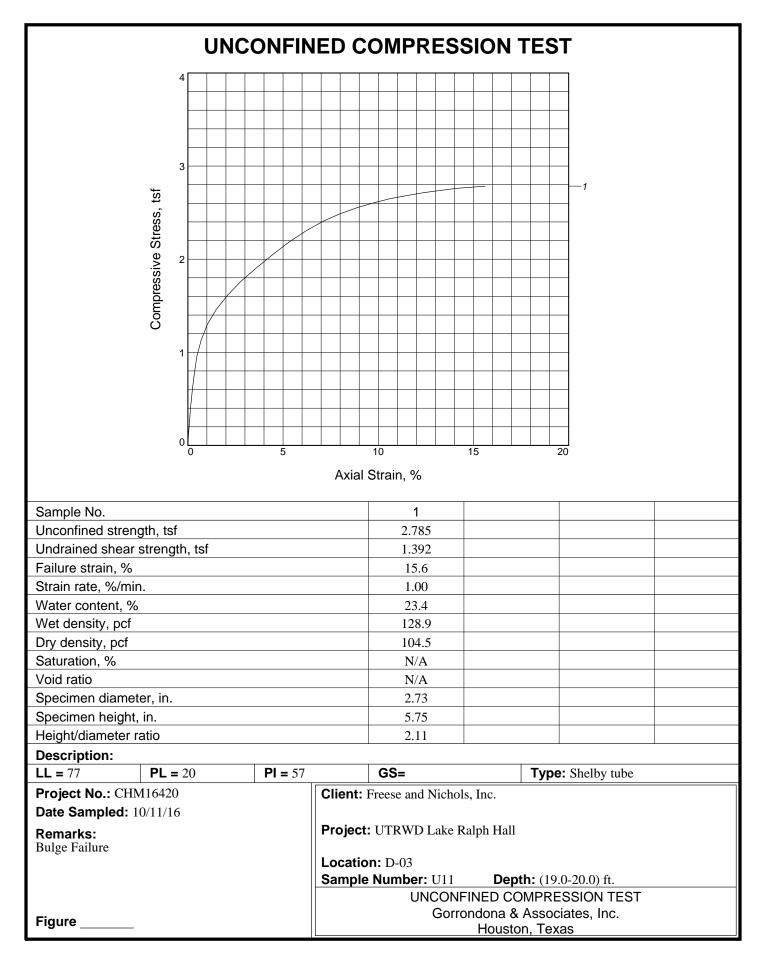
FREESE AND NICHOLS, INC. 4055 INTERNATIONAL PLAZA, SUITE 200 FORT WORTH, TX 76109-4895 (817) 735-7300

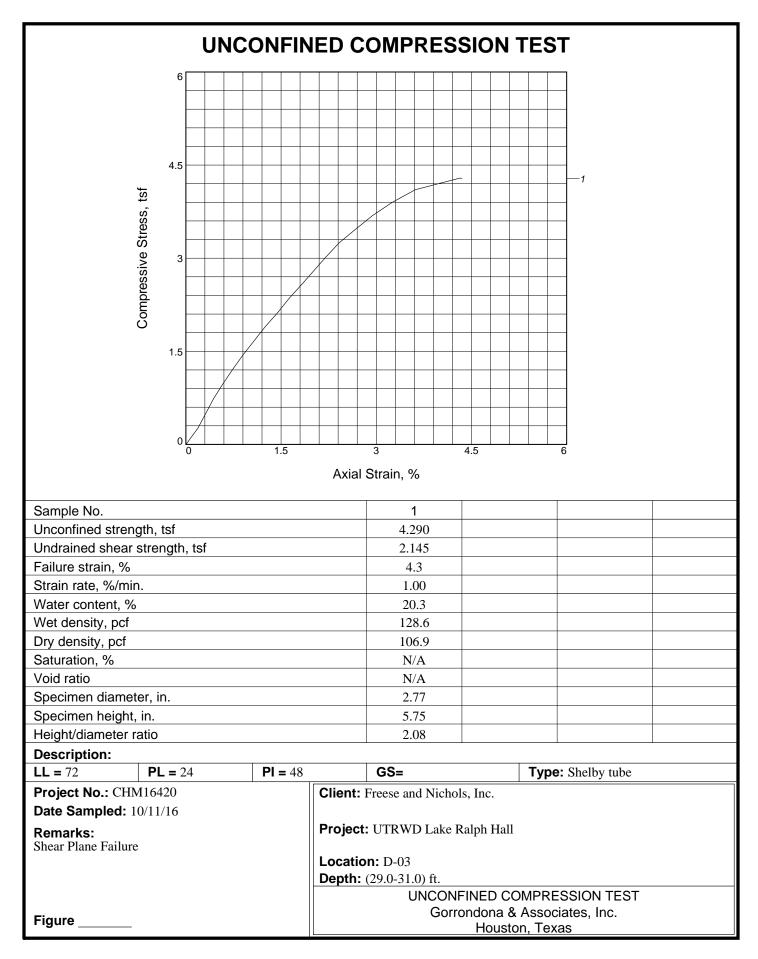

GEOTECHNICAL LABORATORY TEST SUMMARY

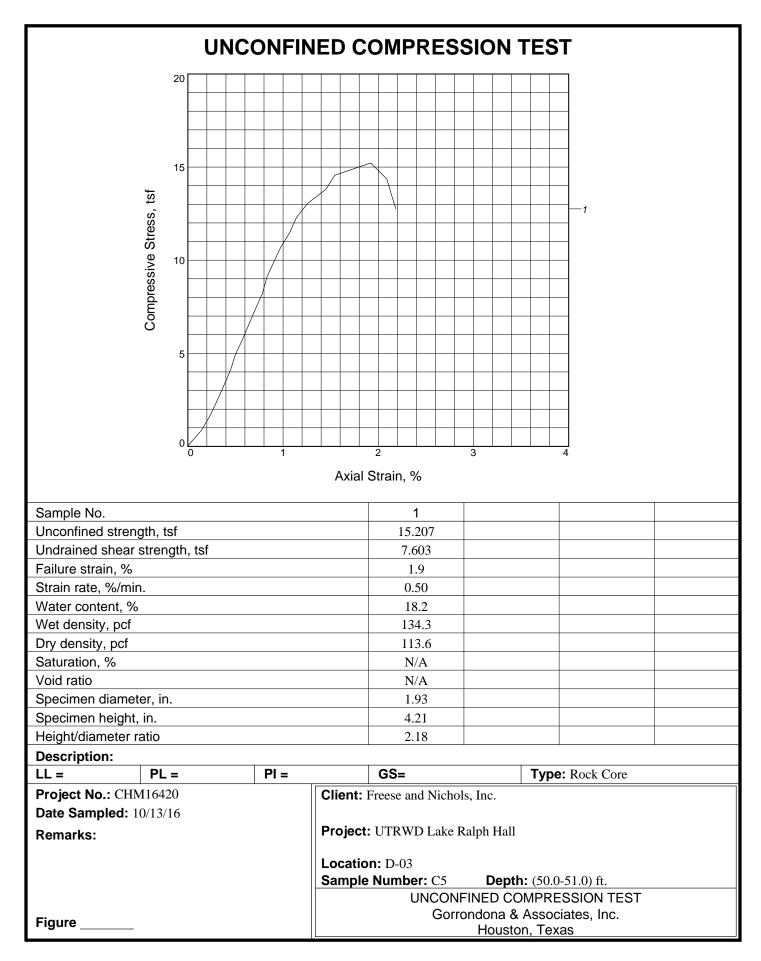

orehole	Depth	USCS	Water Content [%]	Dry Density [pcf]	Percent Passing No. 200 Sieve	Liquid Limit	Plastic Limit	Plasticity Index	Unconfined Compressive Strength [tsf]	Strain at Failure [percent]	
D-03	7	СН	24	100	93	56	29	27			
D-03	19	СН	23	105	96	77	20	57	2.8	15.6	
D-03	23	СН	23	100	91	56	23	33			
D-03	29	СН	20	107	85	72	24	48	4.3	4.3	
D-03	34	MARL	18		73	58	24	34			
D-03	50	MARL	18	114					15.2	1.9	
D-04	2	СН	22	97							
D-04	6	СН	26	96	100	66	31	35		1	
D-04	9	СН	24	103	98	70	23	47			
D-04	13	СН	23	104					1.8	5.3	
D-04	18	СН	23	102	96	54	24	30			
D-04	23	СН	22	106					2.1	15.2	
D-04	28	СН	24	103	78	55	19	36	1.1	2.5	
D-04	40	MARL	18	114	90	60	26	34	11.3	1.8	
D-05	3	CL			85	36	20	16			
D-05	8	CL	22								
D-05	19	СН	19	112	94	58	19	39	3.3	15.9	
D-05	24	СН	21	108					2.9	14.9	
D-05	29	СН	27	97	89	50	25	25			
D-05	35	MARL	17	116	67	50	23	27	13.6	2.4	
D-05	45	MARL	17	116							
DS-01	6	СН	26	101	90	82	28	54	2.6	15.7	
DS-01	13	СН	26	100		-	-	-	-	-	
DS-01	23	СН	24	102	91	56	22	34	1.6	15.4	
DS-01	35	MARL	20	112					13.8	2.3	
		1								1	
DS-02	2	СН	17		93	51	20	31			
DS-02	13	СН	27	111	95	80	27	53	2.1	3.3	
DS-02	33	СН	29	97	89	77	24	53	1.3	6.9	
			1 1		<u> </u>						

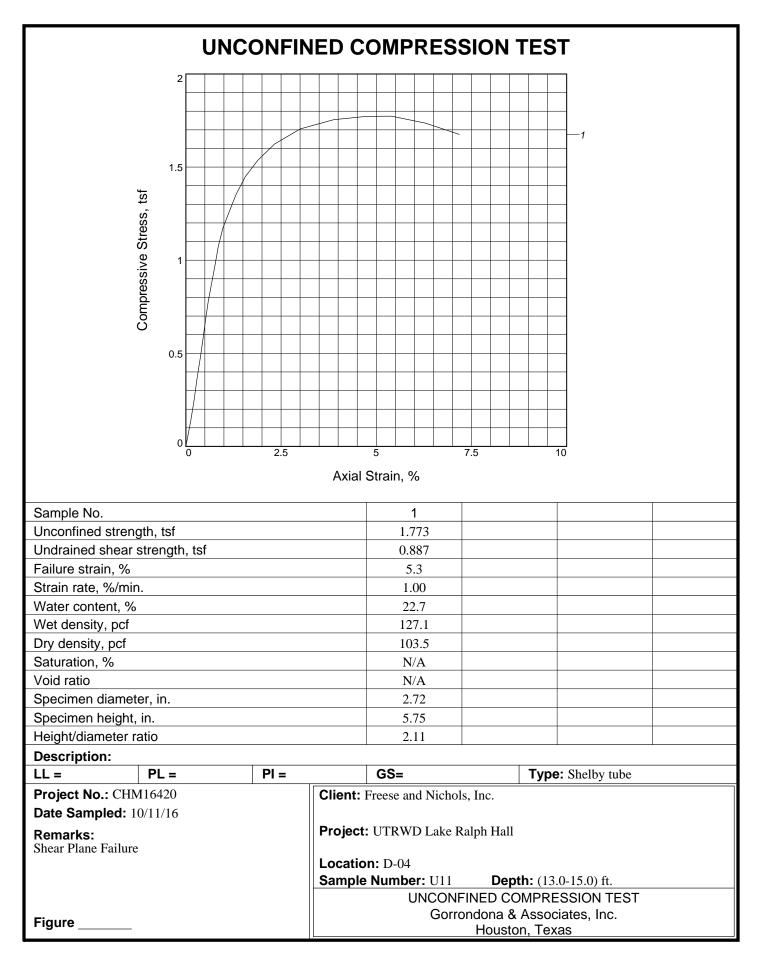

FREESE AND NICHOLS, INC. 4055 INTERNATIONAL PLAZA, SUITE 200 FORT WORTH, TX 76109-4895 (817) 735-7300

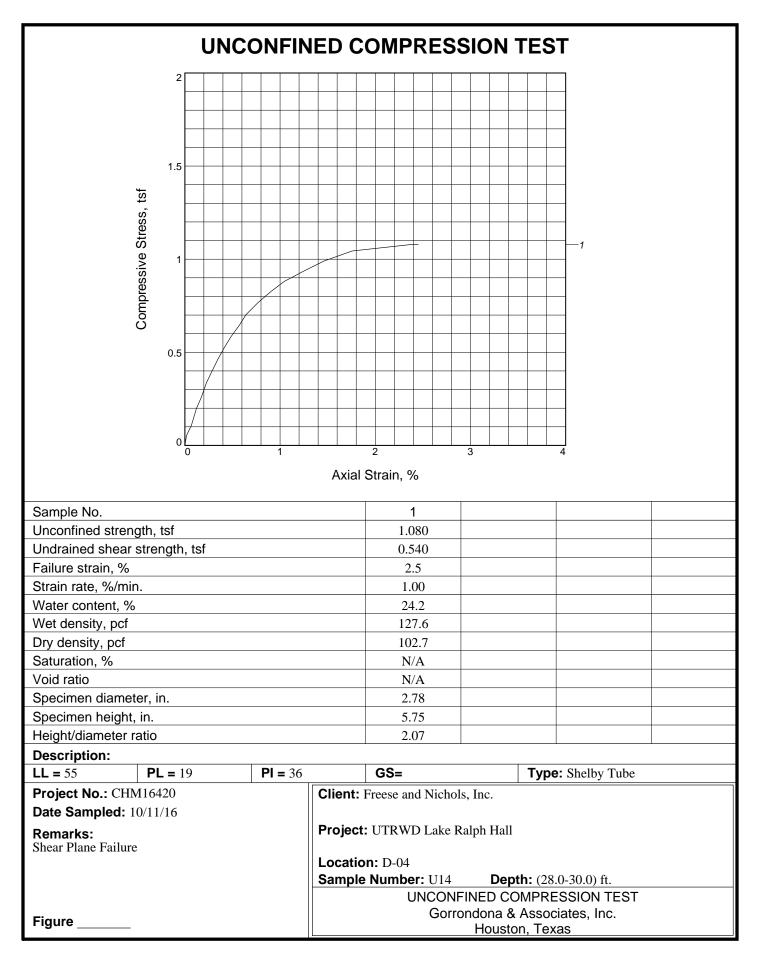

GEOTECHNICAL LABORATORY TEST SUMMARY

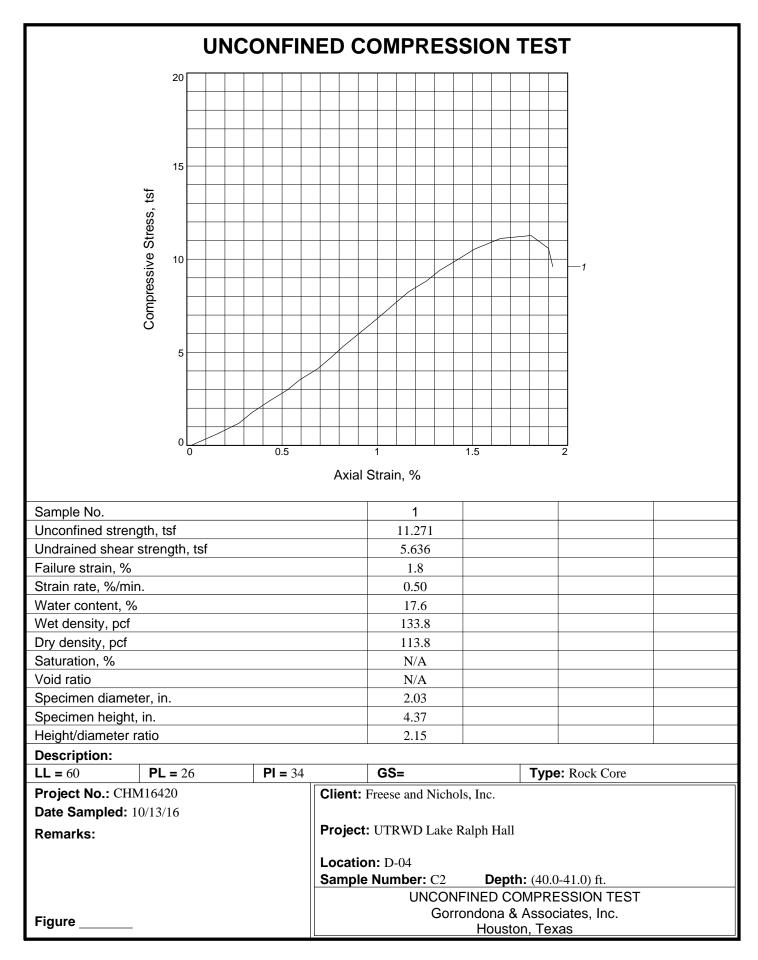

	PROJECT NAME: PROJECT NO.:	Lake Ralph Hall CHM16420	Conceptual Design St	udy							
Borehole	Depth	USCS	Water Content [%]	Dry Density [pcf]	Percent Passing No. 200 Sieve	Liquid Limit	Plastic Limit	Plasticity Index	Unconfined Compressive Strength [tsf]	Strain at Failure [percent]	
ES-01	2	СН	16								
ES-01	5	СН	30	98							
ES-01	13	СН	22								
ES-02	7	CL	19								
ES-02	13	CL	16	101	85	46	20	26			
ES-03	18	СН	26								
					1						
	1	1			1						
	1	1			1 1			1			
	1							1			
Page 3 of 3	1	I					I	11			REESE

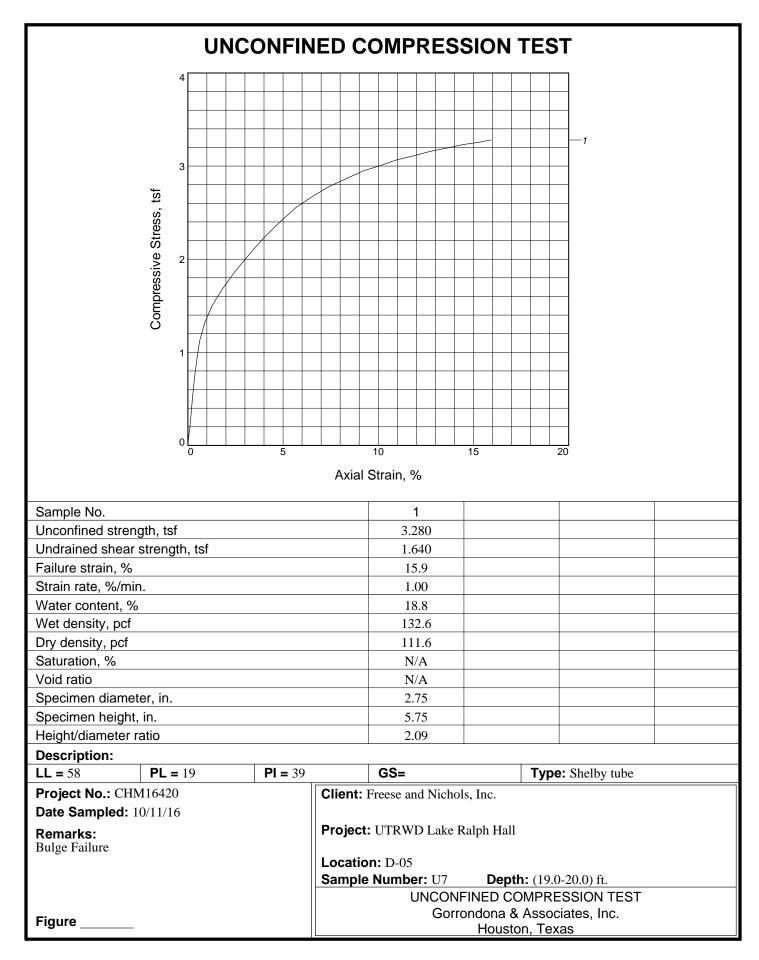


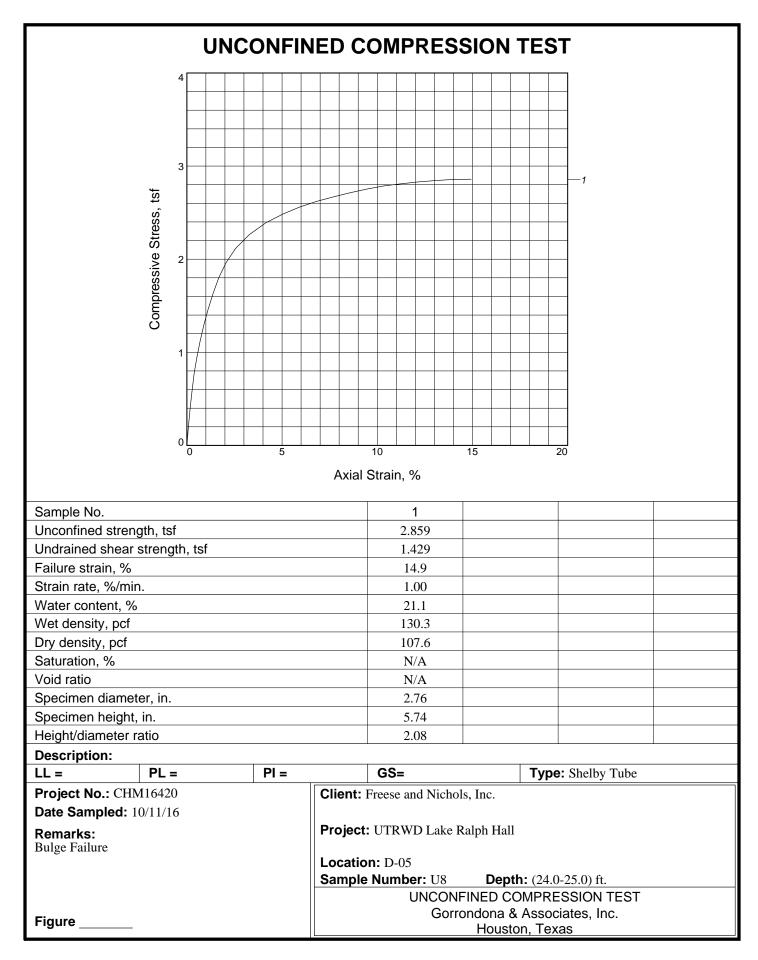


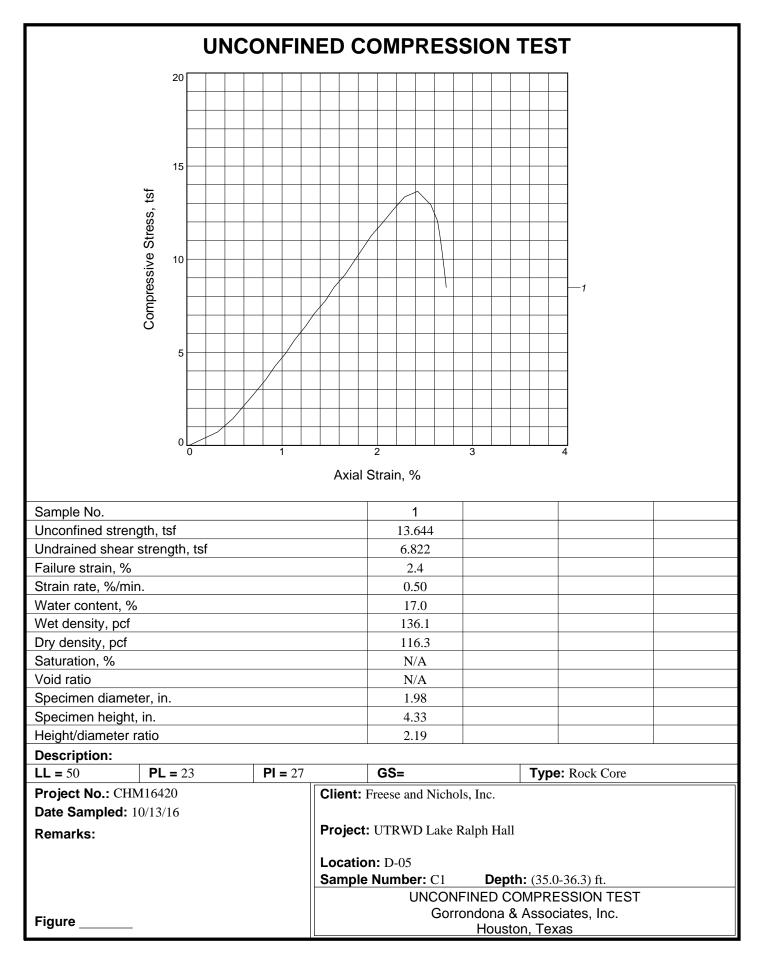


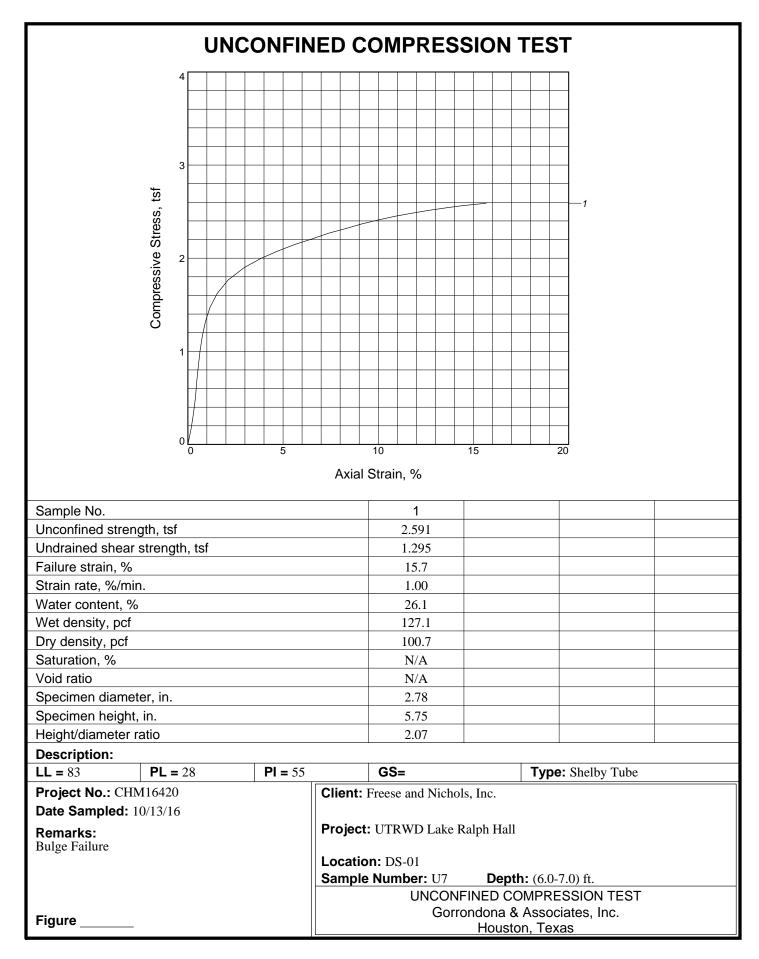


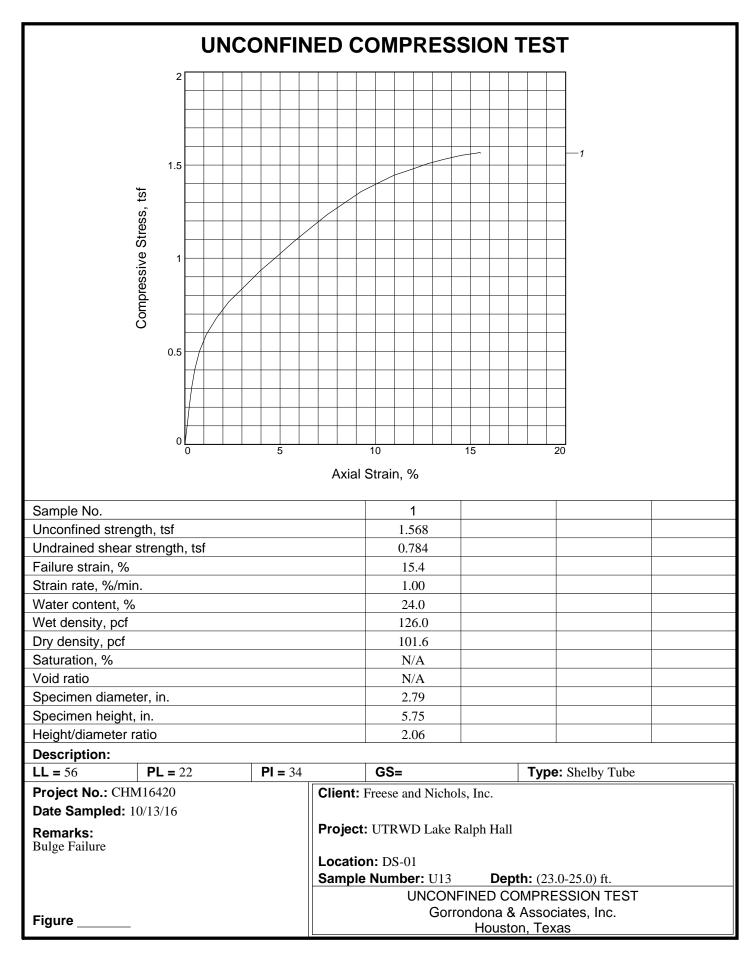


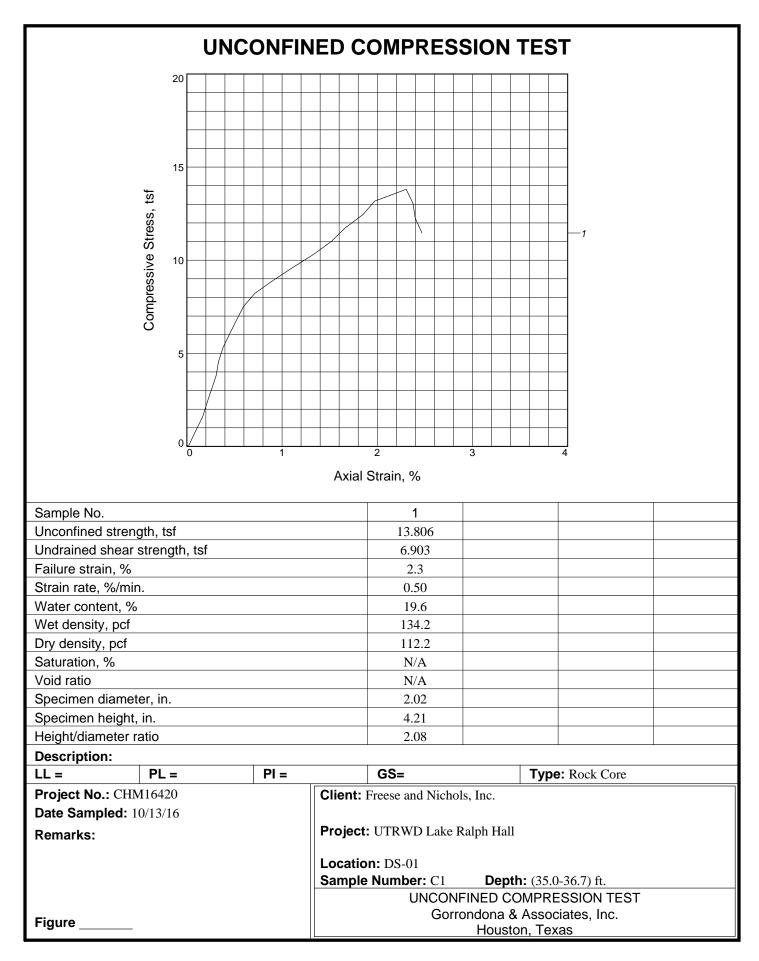


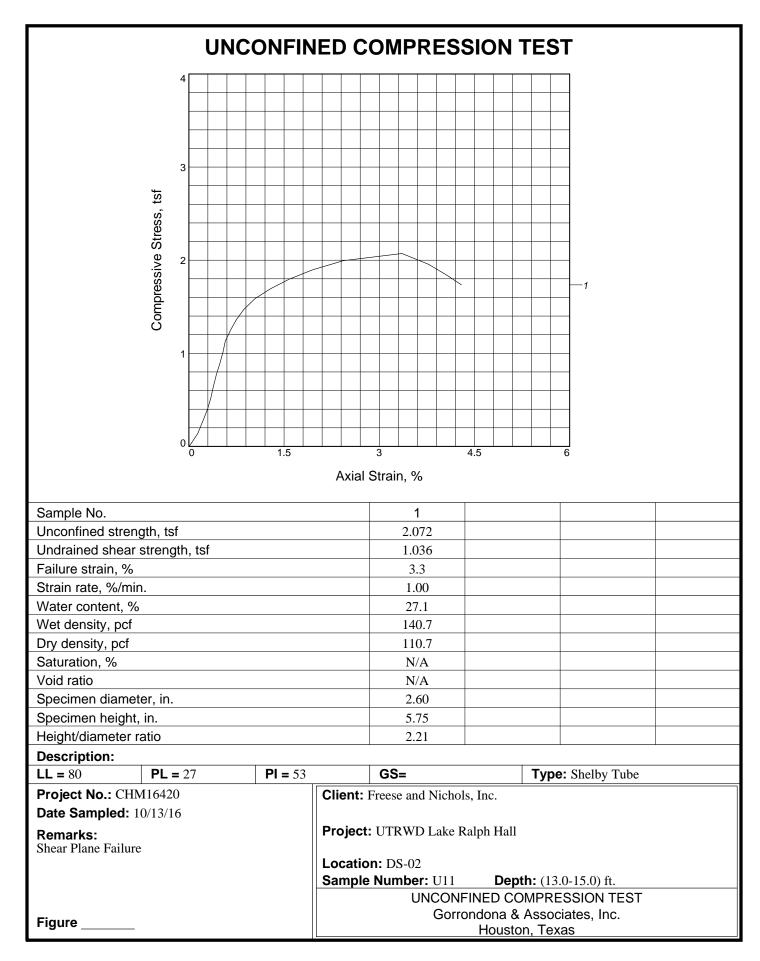


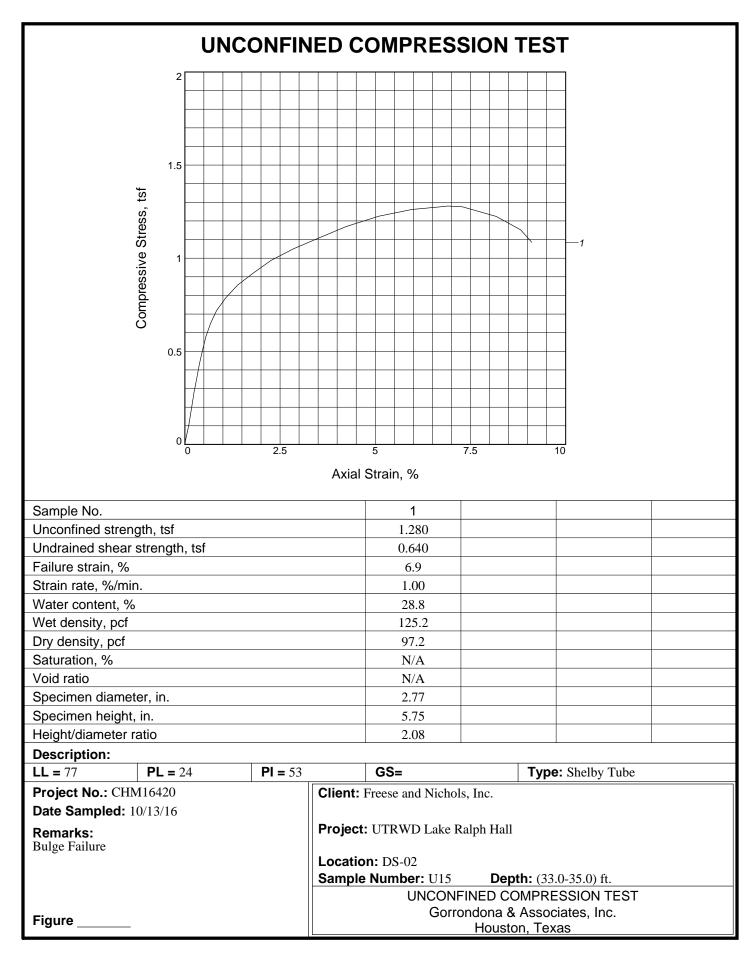


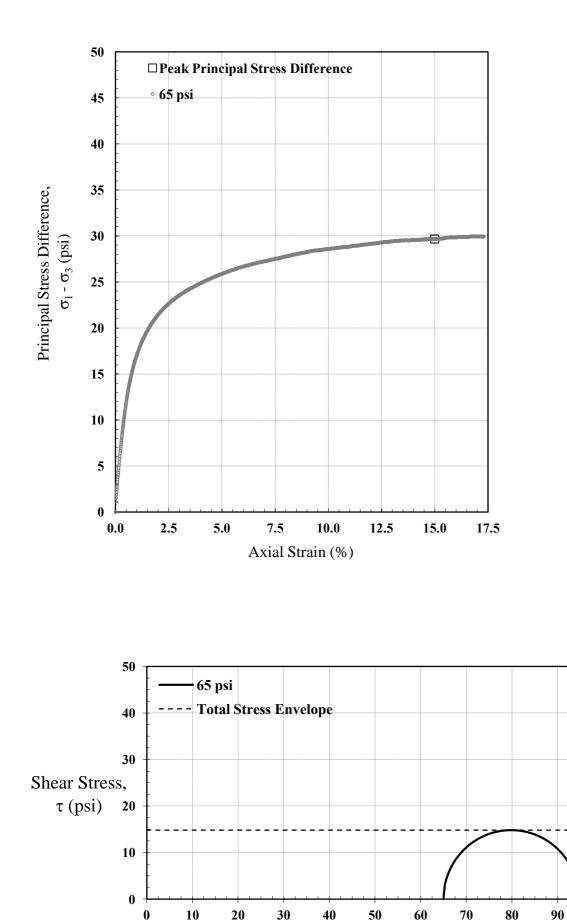








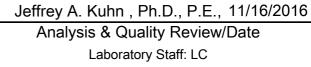




Unconsolidated-Undrained (Q) Triaxial Compression

Client: Gorrondona & Associates Project: UTRWD Lake Ralph Hall Sample: D-02 (9-10)

TRI Log #:	24670
Test Method:	ASTM D2850


Test Parameters	
Minor Principal Stress (psi)	65.0
Rate of Strain (%/hr)	60

Initial Properties					
Avg. Diameter (in)	2.72				
Avg. Height (in)	5.70				
Avg. Water Content (%)	22.5				
Bulk Density (pcf)	126.6				
Dry Density (pcf)	103.4				
Saturation (%)	99.2				
Void Ratio	0.60				
Specific Gravity (Assumed)	2.65				

At Failure - Maximum Deviator	Stress
Axial Strain at Failure (%)	15.0
Minor Total Stress (psi)	65.0
Major Total Stress (psi)	94.7
Principal Stress Diff. (psi)	29.7

Total Stress Envelope					
Friction Angle (deg)	0				
Undrained Shear Strength, S _u (psi)	14.8				
S _u / σ ₃	0.2				

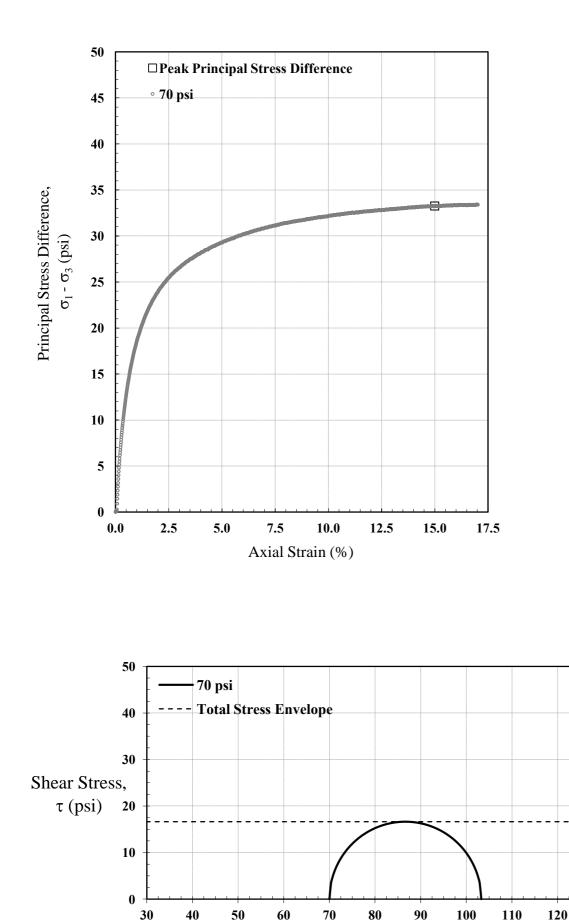
Note: The Mohr failure envelope was taken as a horizontal straight line. It should, however, be noted that the specimen was partially saturated.

1 of 1

Total Stress, σ (psi)

100

The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.

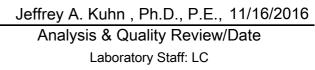

TRI ENVIRONMENTAL, INC.

9063 BEE CAVES RD. - AUSTIN, TX 78733 - USA PH: 800.880.TEST OR 512.263.2101

Unconsolidated-Undrained (Q) Triaxial Compression

Client: Gorrondona & Associates Project: UTRWD Lake Ralph Hall Sample: D-03 (7-8)

TRI Log #:	24670
Test Method:	ASTM D2850


Test Parameters	
Minor Principal Stress (psi)	70.0
Rate of Strain (%/hr)	60

Initial Properties	
Avg. Diameter (in)	2.73
Avg. Height (in)	5.63
Avg. Water Content (%)	23.8
Bulk Density (pcf)	123.8
Dry Density (pcf)	100.0
Saturation (%)	96.4
Void Ratio	0.65
Specific Gravity (Assumed)	2.65

At Failure - Maximum Deviator Stress	
Axial Strain at Failure (%)	15.0
Minor Total Stress (psi)	70.0
Major Total Stress (psi)	103.3
Principal Stress Diff. (psi)	33.3

Total Stress Envelope		
Friction Angle (deg)	0	
Undrained Shear Strength, S _u (psi)	16.6	
S _u / σ ₃	0.2	

Note: The Mohr failure envelope was taken as a horizontal straight line. It should, however, be noted that the specimen was partially saturated.

1 of 1

Total Stress, σ (psi)

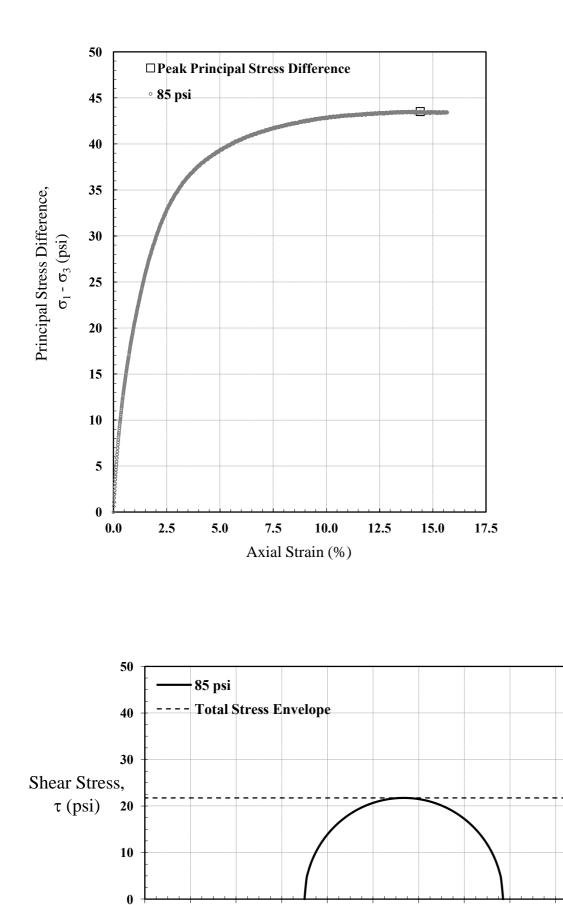
130

The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.

TRI ENVIRONMENTAL, INC.

9063 BEE CAVES RD. - AUSTIN, TX 78733 - USA PH: 800.880.TEST OR 512.263.2101

Client: Gorrondona & Associates Project: UTRWD Lake Ralph Hall Sample: D-03 (23-25)


50

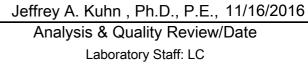
60

70

80

90

TRI Log #:24670Test Method:ASTM D2850


Test Parameters	
Minor Principal Stress (psi)	85.0
Rate of Strain (%/hr)	60

Initial Properties	
Avg. Diameter (in)	2.78
Avg. Height (in)	5.63
Avg. Water Content (%)	23.2
Bulk Density (pcf)	123.7
Dry Density (pcf)	100.4
Saturation (%)	94.9
Void Ratio	0.65
Specific Gravity (Assumed)	2.65

At Failure - Maximum Deviator Stress	
Axial Strain at Failure (%)	14.4
Minor Total Stress (psi)	85.0
Major Total Stress (psi)	128.5
Principal Stress Diff. (psi)	43.5

Total Stress Envelope	
Friction Angle (deg)	0
Undrained Shear Strength, S _u (psi)	21.8
S _u / σ ₃	0.3

Note: The Mohr failure envelope was taken as a horizontal straight line. It should, however, be noted that the specimen was partially saturated.

1 of 1

100

110

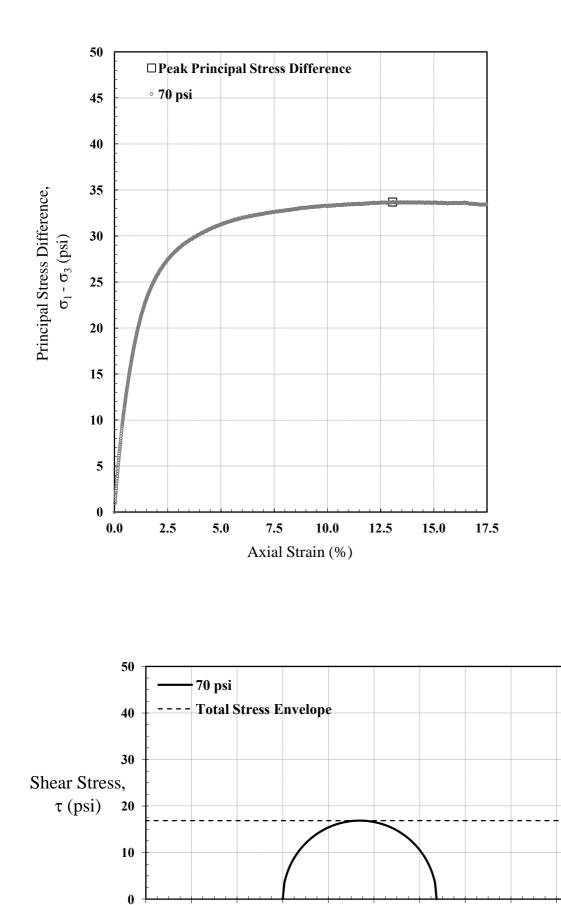
Total Stress, σ (psi)

120

130

140

150


The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.

TRI ENVIRONMENTAL, INC.

9063 BEE CAVES RD. - AUSTIN, TX 78733 - USA | PH: 800.880.TEST OR 512.263.2101

Client: Gorrondona & Associates Project: UTRWD Lake Ralph Hall Sample: D-04 (6-7)

50

40

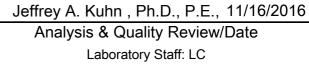
60

70

80

 TRI Log #:
 24670

 Test Method:
 ASTM D2850


Test Parameters	
Minor Principal Stress (psi)	70.0
Rate of Strain (%/hr)	60

Initial Properties	
Avg. Diameter (in)	2.76
Avg. Height (in)	5.65
Avg. Water Content (%)	26.0
Bulk Density (pcf)	121.1
Dry Density (pcf)	96.2
Saturation (%)	95.5
Void Ratio	0.72
Specific Gravity (Assumed)	2.65

At Failure - Maximum Deviator Stress	
Axial Strain at Failure (%)	13.1
Minor Total Stress (psi)	70.0
Major Total Stress (psi)	103.7
Principal Stress Diff. (psi)	33.7

Total Stress Envelope	
Friction Angle (deg)	0
Undrained Shear Strength, S _u (psi)	16.8
S _u / σ ₃	0.2

Note: The Mohr failure envelope was taken as a horizontal straight line. It should, however, be noted that the specimen was partially saturated.

1 of 1

90

100

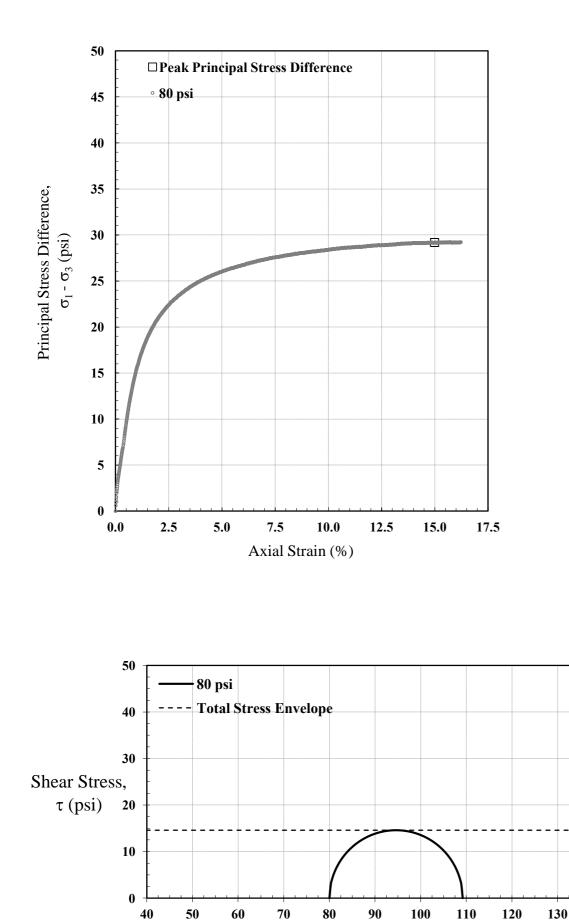
Total Stress, σ (psi)

110

120

130

140


The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.

TRI ENVIRONMENTAL, INC.

9063 BEE CAVES RD. - AUSTIN, TX 78733 - USA | PH: 800.880.TEST OR 512.263.2101

Client: Gorrondona & Associates Project: UTRWD Lake Ralph Hall Sample: D-04 (18-20)

TRI Log #:	24670
Test Method:	ASTM D2850

Test Parameters	
Minor Principal Stress (psi)	80.0
Rate of Strain (%/hr)	60

Initial Properties	
Avg. Diameter (in)	2.76
Avg. Height (in)	5.62
Avg. Water Content (%)	22.6
Bulk Density (pcf)	124.5
Dry Density (pcf)	101.5
Saturation (%)	95.2
Void Ratio	0.63
Specific Gravity (Assumed)	2.65

At Failure - Maximum Deviator Stress	
Axial Strain at Failure (%)	15.0
Minor Total Stress (psi)	80.0
Major Total Stress (psi)	109.2
Principal Stress Diff. (psi)	29.2

Total Stress Envelope		
Friction Angle (deg)	0	
Undrained Shear Strength, S _u (psi)	14.6	
S _u / σ ₃	0.2	

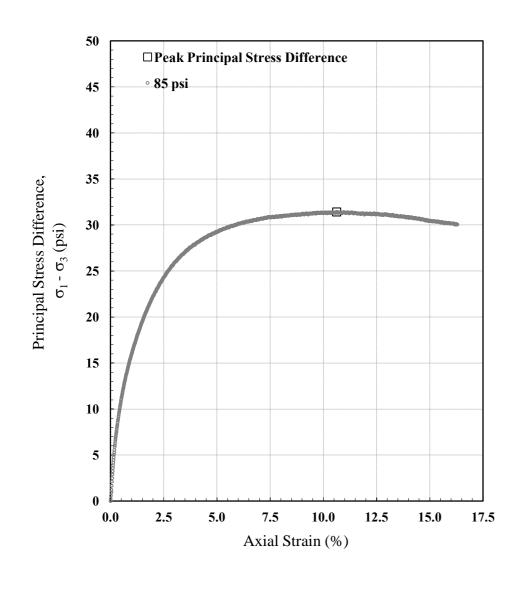
Note: The Mohr failure envelope was taken as a horizontal straight line. It should, however, be noted that the specimen was partially saturated.

1 of 1

Total Stress, σ (psi)

140

The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.

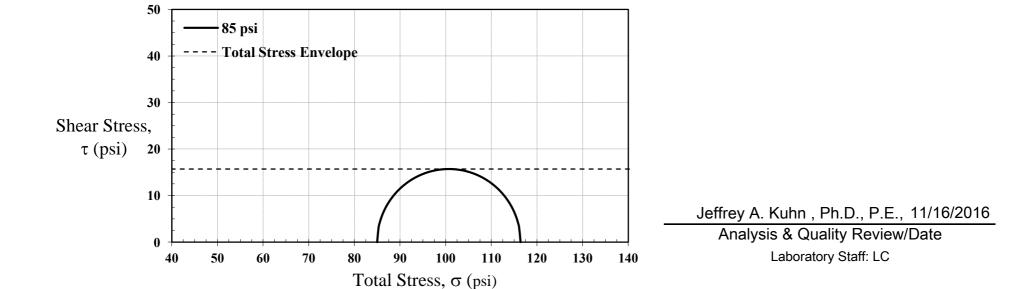

TRI ENVIRONMENTAL, INC.

9063 BEE CAVES RD. - AUSTIN, TX 78733 - USA PH: 800.880.TEST OR 512.263.2101

Jeffrey A. Kuhn , Ph.D., P.E., 11/16/2016 Analysis & Quality Review/Date Laboratory Staff: LC

Client: Gorrondona & Associates Project: UTRWD Lake Ralph Hall Sample: D-05 (29-30)

TRI Log #:24670Test Method:ASTM D2850


Test Parameters	
Minor Principal Stress (psi)	85.0
Rate of Strain (%/hr)	60

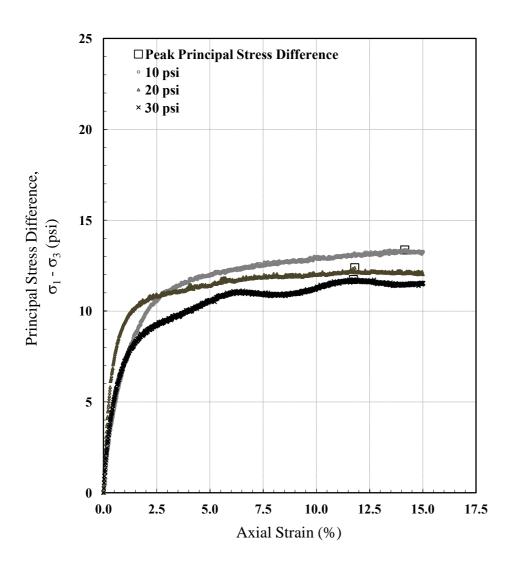
Initial Properties	
Avg. Diameter (in)	2.80
Avg. Height (in)	5.64
Avg. Water Content (%)	27.2
Bulk Density (pcf)	123.4
Dry Density (pcf)	97.0
Saturation (%)	100.0
Void Ratio	0.71
Specific Gravity (Assumed)	2.65

At Failure - Maximum Deviator Stress		
Axial Strain at Failure (%)	10.6	
Minor Total Stress (psi)	85.0	
Major Total Stress (psi)	116.4	
Principal Stress Diff. (psi)	31.4	

Total Stress Envelope		
Friction Angle (deg)	0	
Undrained Shear Strength, S _u (psi)	15.7	
S _u / σ ₃	0.2	

Note: The Mohr failure envelope was taken as a horizontal straight line.

1 of 1


The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.

TRI ENVIRONMENTAL, INC.

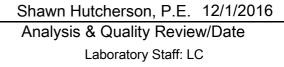
9063 BEE CAVES RD. - AUSTIN, TX 78733 - USA PH: 800.880.TEST OR 512.263.2101

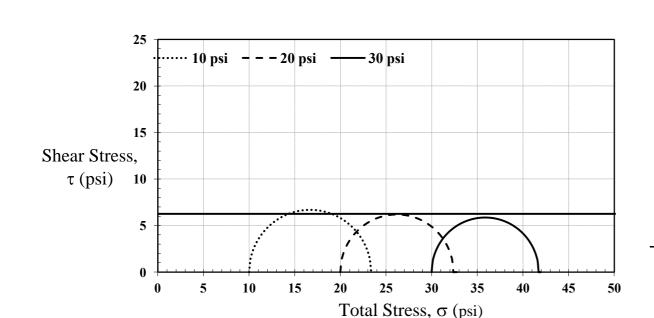
Client: Gorrondona & Associates Project: UTRWD Lake Ralph Hall Sample: Composite BA-03 (4-20)

Samples				
Sample I.D.	Composite BA-03			
Depth/Elev. (ft)		4-20		
Minor Principal Stress (psi)	10.0 20.0 30.0			
Initial Pro	perties			
Avg. Diameter (in)	2.00	2.01	1.99	
Avg. Height (in)	4.42	4.35	4.49	
Avg. Water Content (%)	30.0	30.0	30.0	
Bulk Density (pcf)	119.7	119.1	117.9	
Dry Density (pcf)	92.1	91.6	90.7	
Saturation (%)	99.8	98.6	96.4	
Void Ratio	0.80	0.81	0.82	
Specific Gravity (Assumed)	2.65	2.65	2.65	

TRI Log #:

24670.37


Test Method: ASTM D2850

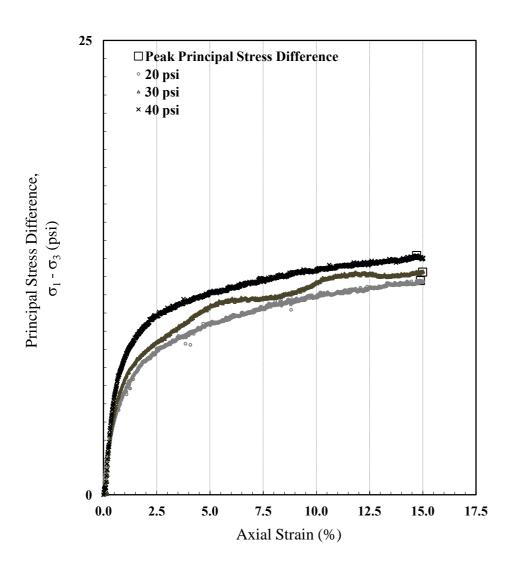

At Failure			
Failure Criterion	Maximum Deviator Stress		
Rate of Strain (%/hr)	30	30	30
Axial Strain at Failure (%)	14.2	11.8	11.7
Minor Total Stress (psi)	10.0	20.0	30.0
Major Total Stress (psi)	23.4	32.4	41.7
Principal Stress Diff. (psi)	13.4	12.4	11.7

Note: Remolded samples with target dry density of 90 pcf and moisture content of 30%.

Total Stress Envelope	
Friction Angle (deg)	0.0
Cohesion (psi)	6.2

Note: A linear fit tangent to the Mohr circles results in a total stress envelope with a negative friction angle. The total stress envelope provide is the average of the undrained shear strengths of the three tests performed.

1 of 1


The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.

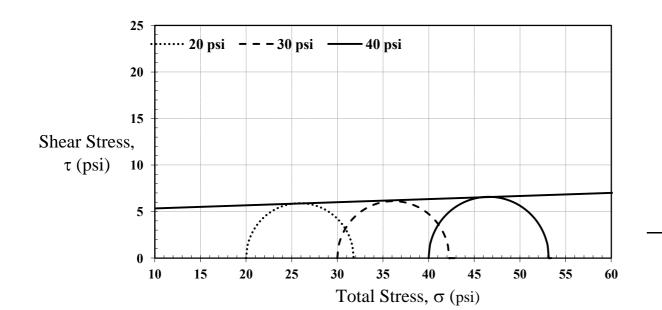
TRI ENVIRONMENTAL, INC.

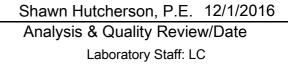
9063 BEE CAVES RD. - AUSTIN, TX 78733 - USA | PH: 800.880.TEST OR 512.263.2101

Client: Gorrondona & Associates Project: UTRWD Lake Ralph Hall Sample: Composite BA-04 (0-15)

Samples				
Sample I.D.	Composite BA-04			
Depth/Elev. (ft)		0-15		
Minor Principal Stress (psi)	20.0 30.0 40.0			
Initial Pro	perties			
Avg. Diameter (in)	1.99	1.99	2.01	
Avg. Height (in)	4.47	4.44	4.65	
Avg. Water Content (%)	29.0	29.0	29.0	
Bulk Density (pcf)	118.1	119.1	117.6	
Dry Density (pcf)	91.6	92.3	91.2	
Saturation (%)	95.3	97.0	94.3	
Void Ratio	0.81	0.79	0.81	
Specific Gravity (Assumed)	2.65	2.65	2.65	

TRI Log #:

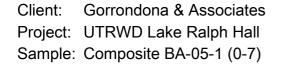

24670.38

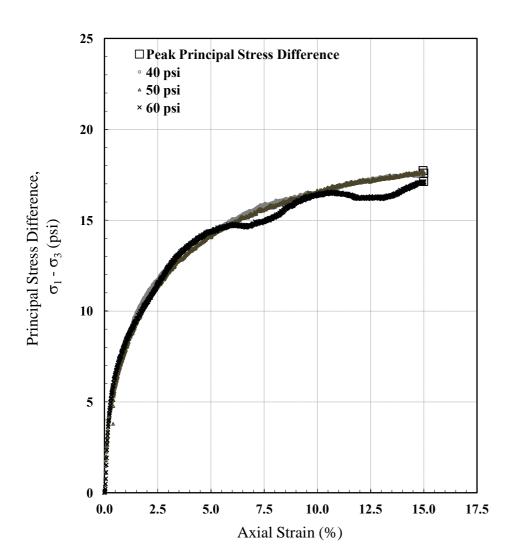

Test Method: ASTM D2850

At Failure			
Failure Criterion	Maximum Deviator Stress		
Rate of Strain (%/hr)	30	30	30
Axial Strain at Failure (%)	14.9	15.0	14.7
Minor Total Stress (psi)	20.0	30.0	40.0
Major Total Stress (psi)	31.8	42.3	53.2
Principal Stress Diff. (psi)	11.8	12.3	13.2

Note: Remolded samples with target dry density of 90 pcf and moisture content of 29%.

Total Stress Envelope	
Friction Angle (deg)	1.9
Cohesion (psi)	5.0


1 of 1


The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.

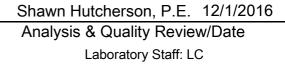
TRI ENVIRONMENTAL, INC.

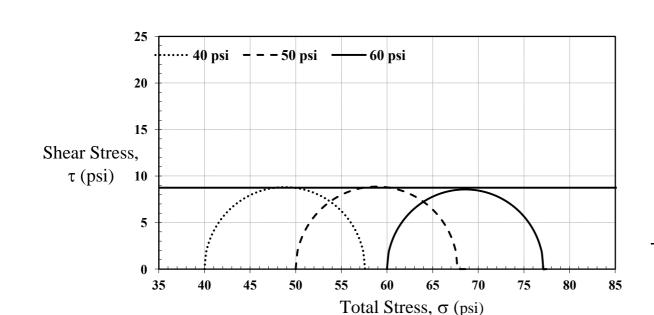
9063 BEE CAVES RD. - AUSTIN, TX 78733 - USA PH: 800.880.TEST OR 512.263.2101

Samples				
Sample I.D.	Composite BA-05-1			
Depth/Elev. (ft)		0-7		
Minor Principal Stress (psi)	40.0 50.0 60.0			
Initial Pro	perties			
Avg. Diameter (in)	1.99	2.00	2.00	
Avg. Height (in)	4.55	4.54	4.57	
Avg. Water Content (%)	30.0	30.0	30.0	
Bulk Density (pcf)	116.5	116.6	115.6	
Dry Density (pcf)	89.6	89.7	88.9	
Saturation (%)	93.9	94.1	92.4	
Void Ratio	0.85	0.85	0.86	
Specific Gravity (Assumed)	2.65	2.65	2.65	

TRI Log #:

24670.39


Test Method: ASTM D2850

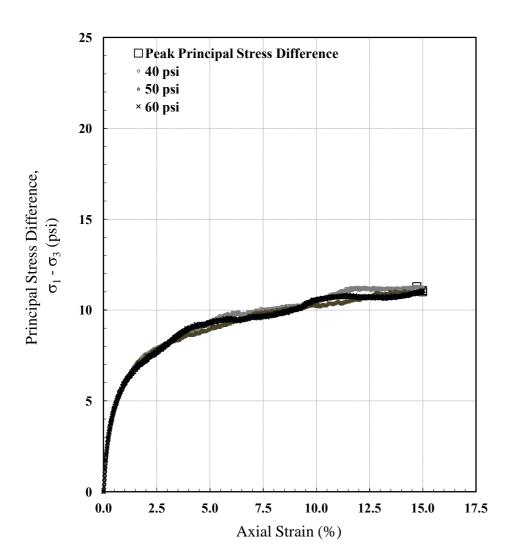

At Failure								
Failure Criterion	Maximum Deviator Stress							
Rate of Strain (%/hr)	30	30	30					
Axial Strain at Failure (%)	15.0	15.0	15.0					
Minor Total Stress (psi)	40.0	50.0	60.0					
Major Total Stress (psi)	57.6	67.7	77.1					
Principal Stress Diff. (psi)	17.6	17.7	17.1					

Note: Remolded samples with target dry density of 90 pcf and moisture content of 30%.

Total Stress Envelope	
Friction Angle (deg)	0.0
Cohesion (psi)	8.7

Note: A linear fit tangent to the Mohr circles results in a total stress envelope with a negative friction angle. The total stress envelope provide is the average of the undrained shear strengths of the three tests performed.

1 of 1


The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.

TRI ENVIRONMENTAL, INC.

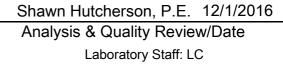
9063 BEE CAVES RD. - AUSTIN, TX 78733 - USA | PH: 800.880.TEST OR 512.263.2101

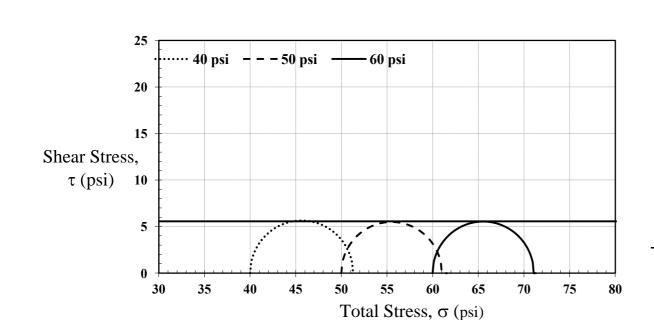
Client: Gorrondona & Associates Project: UTRWD Lake Ralph Hall Sample: Composite BA-05-2 (7-14)

Samples									
Sample I.D.	Com	posite BA	-05-2						
Depth/Elev. (ft)		7-14							
Minor Principal Stress (psi)	40.0	50.0	60.0						
Initial Properties									
Avg. Diameter (in)	1.99	1.99	1.99						
Avg. Height (in)	4.29	4.34	4.30						
Avg. Water Content (%)	27.0	27.0	27.0						
Bulk Density (pcf)	120.6	119.7	121.3						
Dry Density (pcf)	95.0	94.3	95.5						
Saturation (%)	96.4	94.8	97.7						
Void Ratio	0.74	0.76	0.73						
Specific Gravity (Assumed)	2.65	2.65	2.65						

TRI Log #:

24670.40


Test Method: ASTM D2850


At Failure								
Failure Criterion	Maximum Deviator Stress							
Rate of Strain (%/hr)	30	30	30					
Axial Strain at Failure (%)	14.7	15.0	15.0					
Minor Total Stress (psi)	40.0	50.0	60.0					
Major Total Stress (psi)	51.3	61.0	71.1					
Principal Stress Diff. (psi)	11.3	11.0	11.1					

Note: Remolded samples with target dry density of 90 pcf and moisture content of 27%.

Total Stress Envelope						
Friction Angle (deg)	0.0					
Cohesion (psi)	5.6					

Note: A linear fit tangent to the Mohr circles results in a total stress envelope with a negative friction angle. The total stress envelope provide is the average of the undrained shear strengths of the three tests performed.

1 of 1

The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.

TRI ENVIRONMENTAL, INC.

9063 BEE CAVES RD. - AUSTIN, TX 78733 - USA | PH: 800.880.TEST OR 512.263.2101

Crumb Test for Dispersibility of Clayey Soils

Client: Gorrondona & Associates Project: UTRWD Lake Ralph Hall
 TRI Log #:
 24670

 Test Method:
 ASTM D6572-B

Sample	Moisture (Moisture Content (%)					Grade		Dispersive
Identification	Initial	Adjusted		(°C)			Grade		Classification
Identification	minai	Aujusteu	2 min	1 hr	6 hr	2 min	1 hr	6 hr	(1 hr)
Composite BA-03 (4-20)	37.3	-	21.0	20.0	19.0	1	1	1	1
Composite BA-03 (4-20)	41.9	-	20.0	20.0	19.0	1	1	1	1
Composite BA-03 (4-20)	43.5	-	20.0	20.0	19.0	1	1	1	1
Composite BA-04 (0-15)	49.0	-	21.0	20.0	20.0	1	1	1	1
Composite BA-04 (0-15)	29.1	-	20.0	20.0	19.0	1	1	1	1
Composite BA-05-1 (0-7)	88.6	-	21.1	19.8	19.0	1	1	1	1
Composite BA-05-1 (0-7)	42.3	-	20.1	19.8	19.0	1	1	1	1
Composite BA-05-2 (7-14)	106.7	-	20.1	19.5	19.0	1	1	1	1
Composite BA-05-2 (7-14)	101.3	-	20.0	19.5	19.0	1	2	2	2

Grade 1, (Nondispersive): No Reaction; There is no turbid water created by colloids suspended in the water. All particles settle during the first hour. If the cloud is easily visible, assign Grade 3. If the cloud is faintly seen in only small area, assign Grade 1.

Grade 2, (Intermediate): Slight Reaction; A faint, barely visible colloidal suspension causes turbid water near or around the soil crumb surface.

Grade 3, (Dispersive): Moderate Reaction; an easily visible cloud of suspended clay colloids is seen around all of the soil crumb surface. The cloud may extend up to 10 mm (¾ in.) away from the soil crumb mass along the bottom of dish.

Grade 4, (Highly Dispersive): Strong Reaction; a dense, profuse cloud of suspended clay colloids is seen around the entire bottom of dish. The soil crumb dispersion is so extensive that it is difficult to determine the interface of the original soil crumb. Often, the colloidal suspension is easily visible on the sides of the dish.

> Shawn Hutcherson, P.E. 12/1/2016 Quality Review/Date Tested by: MF & PC

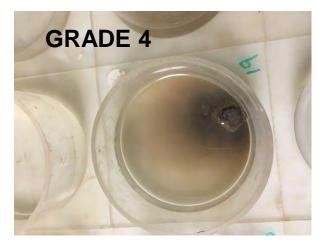
Page 1 of 1 The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reporduction of this report, except in full, without prior approval of TRI.

TRI ENVIRONMENTAL, INC.

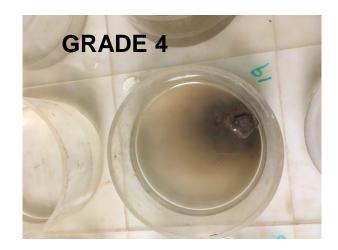
Project Name	ι	JTRWD Lake Ra	lph Hall		Project No.	СНМ	16420	Date	10/19/2016
Boring No. E Sample Descriptio			e No. <u>Composite U3, U4</u> Sample Depth (ft.) Brown FAT CLAY (CH)		1.	1.5-4.0			
	-								
Moisture Content	2	ninutes	1 4		Cha		246		1
Specimen Type	Grade	°C	Grade	nour C	Grade	ours °C	24 h Grade	°C	-
Natural Cube	Graue	C	Graue	C	Grade	C	Grade	C	-
Time Started:	1	21.3	4	23.6	4	21.4	4	21.1	
Initial Temp(°C): 21.		21.5	4	23.0	7	21.4	4	21.1	
Boring No. E		Sample No.	Composi		- Gray FAT CLAY		ble Depth (ft.)	4.	0-5.0
Sample Descriptio					DI dY FAT CLAT				
Moisture Content									
	2 m	ninutes	1 h	nour	6 hc	ours	24 h	ours	1
Specimen Type	Grade	°C	Grade	°C	Grade	°C	Grade	°C	1
Natural Cube		1 1							1
Time Started:	1	21.6	1	21.3	1	22.3	1	21.1	
Initial Temp(°C): 21.	7								
Boring No. BA-01 Sample N Sample Description			Composi		 Gray FAT CLAY		7.()-10.0	
Sample Descriptio	···			(JI dy I AT CLAT				
Moisture Content									
	2 m	ninutes	1 h	nour	6 hc	ours	24 h	ours	1
Specimen Type	Grade	°C	Grade	°C	Grade	°C	Grade	°C	
Natural Cube									
Time Started:	1	21.8	1	21.4	3	22.2	4	21.1	
Initial Temp(°C): 22.	1								
			C			6			0.00.0
Boring No. E Sample Descriptio	3A-01	Sample No.	Composit		 own SANDY FA ⁻	•	ble Depth (ft.)	14.	0-20.0
Sample Descriptio	n			LIGHT BIT	DWII SANDT FA				
Moisture Content									
	2 m	ninutes	1 h	nour	6 hc	ours	24 h	ours	1
Specimen Type	Grade	°C	Grade	°C	Grade	°C	Grade	°C	
Natural Cube									1
Time Started:	1	23.4	2	23.8	2	20.9	2	20.9	
Initial Temp(°C): 23.	2								
	3A-02	Sample No.	Composi	te U2-U10			ble Depth (ft.)	1.	0-7.0
Sample Descriptio	n			(Gray FAT CLAY				
Moisture Content	7								
	2 m	ninutes	1 h	nour	6 hc	ours	24 h	ours	1
Specimen Type	Grade	°C	Grade	°C	Grade	°C	Grade	°C	1
Natural Cube									1
Time Started:	1	22.8	1	23.5	1	20.8	1	20.9	
Initial Temp(°C): 21.	.5								

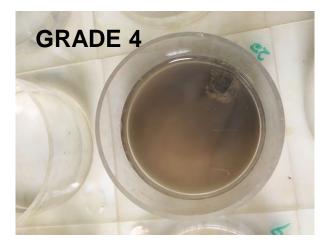
Project Name	UTR	WD Lake Ralph	Hall		Project No.	(Date	10/18/2016	
Boring No. BA- Sample Description	-02	Sample No.	Composit	e U2-U10 G	- ray FAT CLAY	Samp (CH)	le Depth (ft.)	7.0	0-10.0
Moisture Content									
	2 mi	nutes	1 h	our	6 ho	ours	24 h	ours	1
Specimen Type	Grade	°C	Grade	°C	Grade	°C	Grade	°C	
Natural Cube									
Time Started:	1	21.4	1	23	1	20.9	1	21	
Initial Temp(°C): 21.3									
Boring No. BA- Sample Description		Sample No.	Composi		- ray FAT CLAY		le Depth (ft.)	0.0	0-4.0
Sample Description				0	Idy I AT CLAT				·
Moisture Content									_
	2 mi	nutes	1 h	our	6 ho	ours	24 h		
Specimen Type	Grade	°C	Grade	°C	Grade	°C	Grade	°C	
Natural Cube									
Time Started:	1	21.3	1	22.6	1	21.0	1	20.9	
Initial Temp(°C): 21.3									
Boring No. BA- Sample Description		Sample No.	Composite		own LEAN CLA		le Depth (ft.)	14.	0-20.0
Moisture Content									
Moisture Content	2 mi	nutes	1 h	our	6 hc	ours	24 h]
Moisture Content Specimen Type	2 mi Grade	nutes °C	1 h Grade	our °C	6 ho Grade	ours °C	24 h Grade	ours °C	
	Grade	°C		°C		°C		°C	
Specimen Type Natural Cube Time Started:									
Specimen Type Natural Cube	Grade	°C	Grade	°C	Grade	°C	Grade	°C	
Specimen TypeNatural CubeTime Started:Initial Temp(°C):Boring No.ES-	Grade 1 01	°C 22.5	Grade 1	°C 21.9 te U1-U3	Grade 1	°C 21.2 Samp	Grade	°C 21.1	0-3.0
Specimen Type Natural Cube Time Started: Initial Temp(°C): 22.5	Grade 1 01	°C 22.5	Grade 1	°C 21.9 te U1-U3	Grade	°C 21.2 Samp	Grade 1	°C 21.1	0-3.0
Specimen Type Natural Cube Time Started: Initial Temp(°C): 22.5 Boring No. ES- Sample Description	Grade 1 01	°C 22.5	Grade 1	°C 21.9 te U1-U3	Grade 1	°C 21.2 Samp	Grade 1	°C 21.1	0-3.0
Specimen TypeNatural CubeTime Started:Initial Temp(°C):Boring No.ES-	Grade 1 01	°C 22.5 Sample No.	Grade 1 Composi	°C 21.9 te U1-U3 T	Grade 1 an FAT CLAY (°C 21.2 Samp CH)	Grade 1 le Depth (ft.)	°C 21.1 0.	0-3.0
Specimen Type Natural Cube Time Started: Initial Temp(°C): 22.5 Boring No. ES- Sample Description	Grade 1 01	°C 22.5	Grade 1 Composi	°C 21.9 te U1-U3	Grade 1 an FAT CLAY (°C 21.2 Samp	Grade 1	°C 21.1 0.	0-3.0
Specimen Type Natural Cube Time Started: Initial Temp(°C): 22.5 Boring No. ES- Sample Description Moisture Content	Grade 1 01 2 mi	°C 22.5 Sample No.	Grade 1 Composi 1 h	°C 21.9 te U1-U3 T our	Grade 1 an FAT CLAY (6 ho	°C 21.2 Samp CH)	Grade 1 le Depth (ft.) 24 h	°C 21.1 0. ours	0-3.0
Specimen Type Natural Cube Time Started: Initial Temp(°C): 22.5 Boring No. ES- Sample Description Moisture Content Specimen Type	Grade 1 01 2 mi	°C 22.5 Sample No.	Grade 1 Composi 1 h	°C 21.9 te U1-U3 T our	Grade 1 an FAT CLAY (6 ho	°C 21.2 Samp CH)	Grade 1 le Depth (ft.) 24 h	°C 21.1 0. ours	0-3.0
Specimen Type Natural Cube Time Started: Initial Temp(°C): 22.5 Boring No. ES- Sample Description Moisture Content Specimen Type Natural Cube	Grade 1 01 Constant Crade	°C 22.5 Sample No.	Grade 1 Composi 1 h Grade	°C 21.9 te U1-U3 T our °C	Grade 1 an FAT CLAY (Grade	°C 21.2 Samp CH) Ours °C	Grade 1 le Depth (ft.) 24 h Grade	°C 21.1 0.1 ours °C	0-3.0
Specimen Type Natural Cube Time Started: Initial Temp(°C): 22.5 Boring No. ES- Sample Description Moisture Content Specimen Type Natural Cube Time Started: Initial Temp(°C): 21.9	Grade 1 01 2 mi Grade 1	°C 22.5 Sample No.	Grade 1 Composi 1 h Grade	°C 21.9 te U1-U3 T our C 21.3 te U4-U9	Grade 1 an FAT CLAY (Grade	°C 21.2 Samp CH) °C 21.0 Samp	Grade 1 le Depth (ft.) 24 h Grade	°C 21.1 0.1 ours °C 20.1	0-3.0
Specimen Type Natural Cube Time Started: Initial Temp(°C): 22.5 Boring No. ES- Sample Description Moisture Content Specimen Type Natural Cube Time Started: Initial Temp(°C): 21.9 Boring No. ES- Sample Description	Grade 1 01 2 mi Grade 1	°C 22.5 Sample No. 0 °C 23.1	Grade 1 Composi 1 h Grade	°C 21.9 te U1-U3 T our C 21.3 te U4-U9	Grade 1 an FAT CLAY (Grade 1	°C 21.2 Samp CH) °C 21.0 Samp	Grade 1 le Depth (ft.) Grade 1	°C 21.1 0.1 ours °C 20.1	
Specimen Type Natural Cube Time Started: Initial Temp(°C): 22.5 Boring No. ES- Sample Description Moisture Content Specimen Type Natural Cube Time Started: Initial Temp(°C): 21.9 Boring No. ES-	Grade 1 01 2 mi Grade 1 01	°C 22.5 Sample No. °C 23.1 Sample No.	Grade 1 Composi 1 h Grade 1 Composi	°C 21.9 te U1-U3 T our 21.3 te U4-U9 Br	Grade 1 an FAT CLAY (Grade 1 own FAT CLAY	°С 21.2 Samp СН) 21.0 21.0 Samp (СН)	Grade 1 le Depth (ft.) Grade 1 le Depth (ft.)	°C 21.1 0. 0. 0. 20.1 3.	
Specimen Type Natural Cube Time Started: Initial Temp(°C): 22.5 Boring No. ES- Sample Description Moisture Content Specimen Type Natural Cube Time Started: Initial Temp(°C): 21.9 Boring No. ES- Sample Description Moisture Content Initial Temp(°C): 21.9 Boring No. ES- Sample Description	Grade 1 01 01 Grade 1 01 2 mi	°C 22.5 Sample No. °C 23.1 Sample No.	Grade 1 Composi 1 Grade 1 Composi	°C 21.9 te U1-U3 T our 21.3 te U4-U9 Broour	Grade 1 an FAT CLAY (Grade 1 own FAT CLAY	°C 21.2 Samp CH) Ours 21.0 Samp (CH)	Grade 1 le Depth (ft.) Grade 1 le Depth (ft.)	°C 21.1 0.1 ours °C 20.1 3.1 ours	
Specimen Type Natural Cube Time Started: Initial Temp(°C): 22.5 Boring No. ES- Sample Description Moisture Content Specimen Type Natural Cube Time Started: Initial Temp(°C): 21.9 Boring No. ES- Sample Description Moisture Content Initial Temp(°C): 21.9 Boring No. ES- Sample Description Moisture Content Sample Description	Grade 1 01 2 mi Grade 1 01	°C 22.5 Sample No. °C 23.1 Sample No.	Grade 1 Composi 1 h Grade 1 Composi	°C 21.9 te U1-U3 T our 21.3 te U4-U9 Br	Grade 1 an FAT CLAY (Grade 1 own FAT CLAY	°С 21.2 Samp СН) 21.0 21.0 Samp (СН)	Grade 1 le Depth (ft.) Grade 1 le Depth (ft.)	°C 21.1 0. 0. 0. 20.1 3.	
Specimen Type Natural Cube Time Started: Initial Temp(°C): 22.5 Boring No. ES- Sample Description Moisture Content Specimen Type Natural Cube Time Started: Initial Temp(°C): 21.9 Boring No. ES- Sample Description Moisture Content Initial Temp(°C): 21.9 Boring No. ES- Sample Description	Grade 1 01 01 Grade 1 01 2 mi	°C 22.5 Sample No. °C 23.1 Sample No.	Grade 1 Composi 1 Grade 1 Composi	°C 21.9 te U1-U3 T our 21.3 te U4-U9 Broour	Grade 1 an FAT CLAY (Grade 1 own FAT CLAY	°C 21.2 Samp CH) Ours °C 21.0 Samp (CH)	Grade 1 le Depth (ft.) Grade 1 le Depth (ft.)	°C 21.1 0.1 ours °C 20.1 3.1 ours	

Project Name	UTR	WD Lake Ralph	Hall		_Project No.	C	HM16420	Date	10/18/2016
Boring No. Es	5-01	_Sample No.	Composit		 rown FAT CLAY		ble Depth (ft.)	10.	0-20.0
Moisture Content		-	-				I		•
		inutes °C	1 hour			ours °C		ours °C	
Specimen Type	Grade	Ĺ	Grade	°C	Grade	L	Grade	L	4
Natural Cube	1	21.3	1	23.2	1	20.9	1	20.9	
Time Started: Initial Temp(°C): 21.4	1	21.5	T	25.2	1	20.9	1	20.9	
	,								1
Boring No.	5-02	Sample No.	Composi	te U2-U10		Samp	ole Depth (ft.)	1.	0-4.0
Sample Description		- •			_ rown FAT CLAY		,		
Moisture Content									-
		inutes		our		ours		ours	
Specimen Type	Grade	°C	Grade	°C	Grade	°C	Grade	°C	
Natural Cube									
Time Started:	1	21.1	1	22.4	1	21.1	1	21.0	
Initial Temp(°C): 21.2									1
Boring No. ES		_Sample No.	Composi		_ rown FAT CLAY		ble Depth (ft.)	4.	0-7.0
	7								
Moisture Content		-							•
		inutes		our °C		ours		ours °C	
Specimen Type	Grade	°C	Grade	L	Grade	Ĺ	Grade	Ľ	•
Natural Cube	1	21.4	1	21.2	1	21.1	1	20.0	
Time Started: Initial Temp(°C): 21.4		21.4	1	21.3	1	21.1	1	20.9	
									1
Boring No.	5-02	Sample No.	Composi	te U2-U10		Same	ole Depth (ft.)	7.0)-10.0
Sample Description					_ Tan FAT CLAY (
					·				
Moisture Content									
	2 m	inutes	1 h	our	6 ho	ours	24 h	ours	
Specimen Type	Grade	°C	Grade	°C	Grade	°C	Grade	°C	1
Natural Cube									
Time Started:	1	23.9	1	23.7	1	20.9	1	21.0	
Initial Temp(°C): 22.4									
Boring No. Es		Sample No.	U.	-11 Br	_ rown LEAN CLA		ole Depth (ft.)	13.	0-15.0
						(0-)			
Moisture Content	1								
Moisture Content	2 m	inutes	1 h	iour	6 ho	ours	24 h	ours	1
Moisture Content Specimen Type	2 m Grade	inutes °C	1 h Grade	our °C	6 ho Grade	ours °C	24 h Grade	ours °C]
Specimen Type									

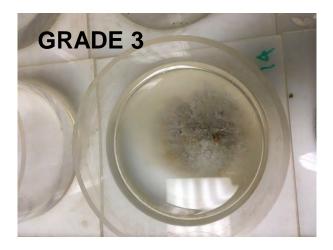


Project Name		UTRWD Lake Ralph Hall Project No. CHM16420						Date	10/18/2016		
Boring No. Sample Des			Sample No.			- own FAT CLAY		le Depth (ft.)	3.	3.0-6.0	
Moisture Conten	nt									1	
			nutes		our		ours		nours		
Specimen Type	L	Grade	°C	Grade	°C	Grade	°C	Grade	°C	1	
Natural Cube											
Time Started:		1	21.4	1	21.5	1	21.2	1	21.1		
Initial Temp(°C):	21.1										
Boring No. Sample Des	ES-0)3	Sample No.	Composit				le Depth (ft.)	6.0	0-10.0	
Sample Des	cription				Bro	own FAT CLAY	' (CH)				
Moisture Conten	it					-		-		•	
			nutes		our		ours	24 hours			
Specimen Type	L	Grade	°C	Grade	°C	Grade	°C	Grade	°C		
Natural Cube											
Time Started:		1	22.9	1	21.6	1	21.1	1	21.1		
Initial Temp(°C):	22.8										
			Sample No.	Composite			-	le Depth (ft.)	14.	0-20.0	
Sample Des	cription				Bro	own FAT CLAY	′ (CH)				
Moisture Conten	nt					-		-		•	
			nutes		our		ours		nours		
Specimen Type	L	Grade	°C	Grade	°C	Grade	°C	Grade	°C	1	
Natural Cube											
Time Started:		1	21.3	1	21.5	1	21.5	1	21.2		
Initial Temp(°C):	21.2]	

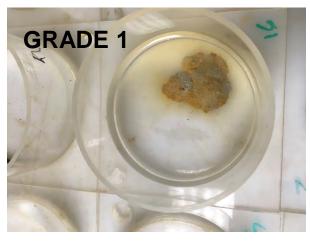

CRUMB TEST PHOTOGRAPHS


BA-01 (1.5-4.0 feet) - 2 Min.

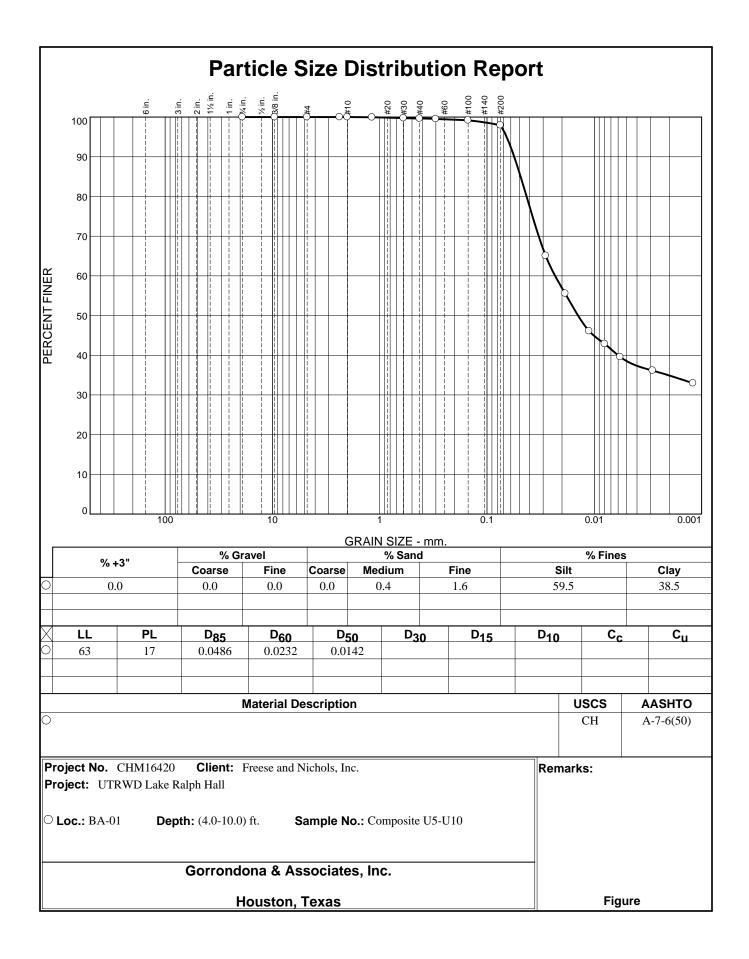
BA-01 (1.5-4.0 feet)- 6 hour


BA-01 (1.5-4.0 feet)- 1 hour

BA-01 (1.5-4.0 feet)- 24 hour


CRUMB TEST PHOTOGRAPHS

BA-01 (7-10 feet) – 6 hour



BA-05 (14-20 feet) - 24 hour

ES-02 (7-10 feet) - 6 hour

Client: Freese and Nichols, Inc. **Project:** UTRWD Lake Ralph Hall Project Number: CHM16420 Location: BA-01 **Depth:** (4.0-10.0) ft. Liquid Limit: 63 **USCS Classification:** CH

Sample Number: Composite U5-U10 Plastic Limit: 17 **AASHTO Classification:** A-7-6(50)

	Sieve Test Data										
Dry Sample and Tare (grams)	Tare (grams)	Cumulative Pan Tare Weight (grams)	Sieve Opening Size	Cumulative Weight Retained (grams)	Percent Finer						
203.17	0.00	0.00	0.75"	0.00	100.0						
			3/8"	0.00	100.0						
			#4	0.00	100.0						
			#8	0.00	100.0						
			#10	0.00	100.0						
			#16	0.11	99.9						
			#30	0.53	99.7						
			#40	0.74	99.6						
			#50	0.98	99.5						
			#100	1.67	99.2						
			#200	4.16	98.0						
			Hydrom	eter Test Data							

Hydrometer test uses material passing #40

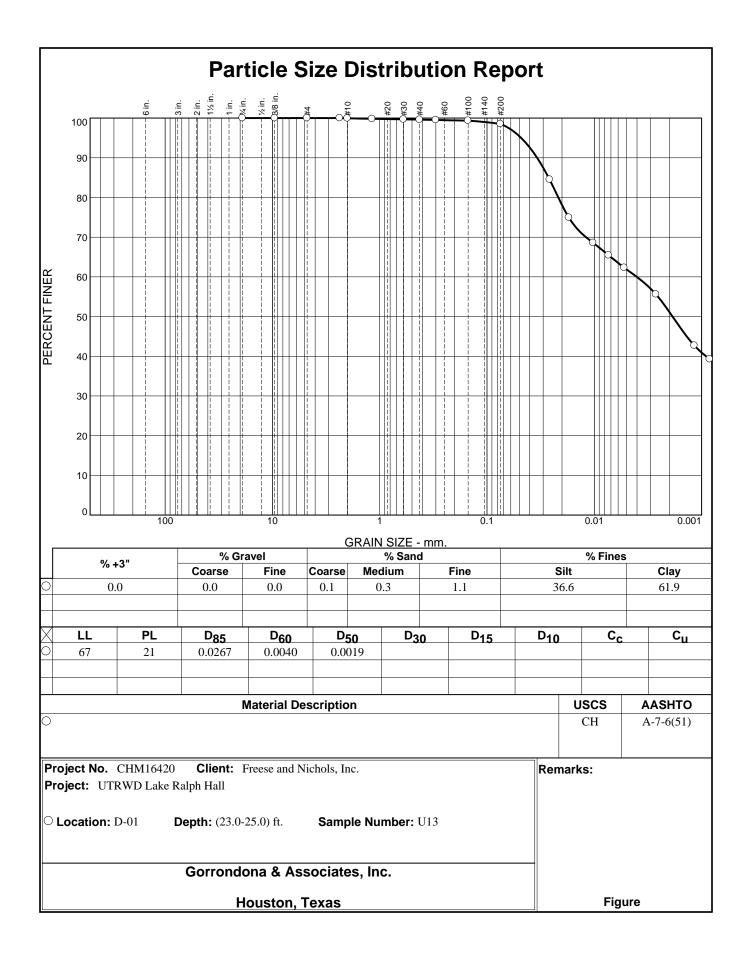
Percent passing #40 based upon complete sample = 99.6

Weight of hydrometer sample =50

Automatic temperature correction

Composite correction (fluid density and meniscus height) at 20 deg. C = -4

Meniscus correction only = 1.0 Specific gravity of solids = 2.69


Hydrometer type = 151H

Hydrometer effective depth equation: L = 16.294964 - 0.2645 x Rm

Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	к	Rm	Eff. Depth	Diameter (mm.)	Percent Finer
2.00	23.6	1.0240	1.0205	0.0129	25.0	9.7	0.0284	65.1
5.00	23.6	1.0210	1.0175	0.0129	22.0	10.5	0.0187	55.6
15.00	23.7	1.0180	1.0145	0.0129	19.0	11.3	0.0112	46.1
30.00	23.6	1.0170	1.0135	0.0129	18.0	11.5	0.0080	42.9
60.00	23.4	1.0160	1.0125	0.0129	17.0	11.8	0.0057	39.6
250.00	22.9	1.0150	1.0114	0.0130	16.0	12.1	0.0029	36.1
1440.00	22.9	1.0140	1.0104	0.0130	15.0	12.3	0.0012	33.0

_ Gorrondona & Associates, Inc. _____

Fractional Components											
		Gravel				San	d			Fines	
Cobbles	Coarse	Fine	Total	Coar	se M	edium	Fine	Total	Silt Clay Tot		
0.0	0.0	0.0				59.5	38.5	98.0			
D ₅	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₄₀	D ₅₀	D ₆₀) D ₈₀	D ₈₅	D ₉₀	D ₉₅
					0.0060	0.014	2 0.02	32 0.0428	0.0486	0.0558	0.0656
Fineness Modulus 0.02											

Client: Freese and Nichols, Inc. **Project:** UTRWD Lake Ralph Hall Project Number: CHM16420 Location: D-01 **Depth:** (23.0-25.0) ft. Liquid Limit: 67 **USCS Classification:** CH

Sample Number: U13 Plastic Limit: 21 **AASHTO Classification:** A-7-6(51)

			Sieve	e Test Data		
Dry Sample and Tare (grams)	Tare (grams)	Cumulative Pan Tare Weight (grams)	Sieve Opening Size	Cumulative Weight Retained (grams)	Percent Finer	
178.38	0.00	0.00	0.75"	0.00	100.0	
			3/8"	0.00	100.0	
			#4	0.00	100.0	
			#8	0.00	100.0	
			#10	0.09	99.9	
			#16	0.33	99.8	
			#30	0.58	99.7	
			#40	0.70	99.6	
			#50	0.86	99.5	
			#100	1.16	99.3	
			#200	2.65	98.5	

Hydrometer test uses material passing #40

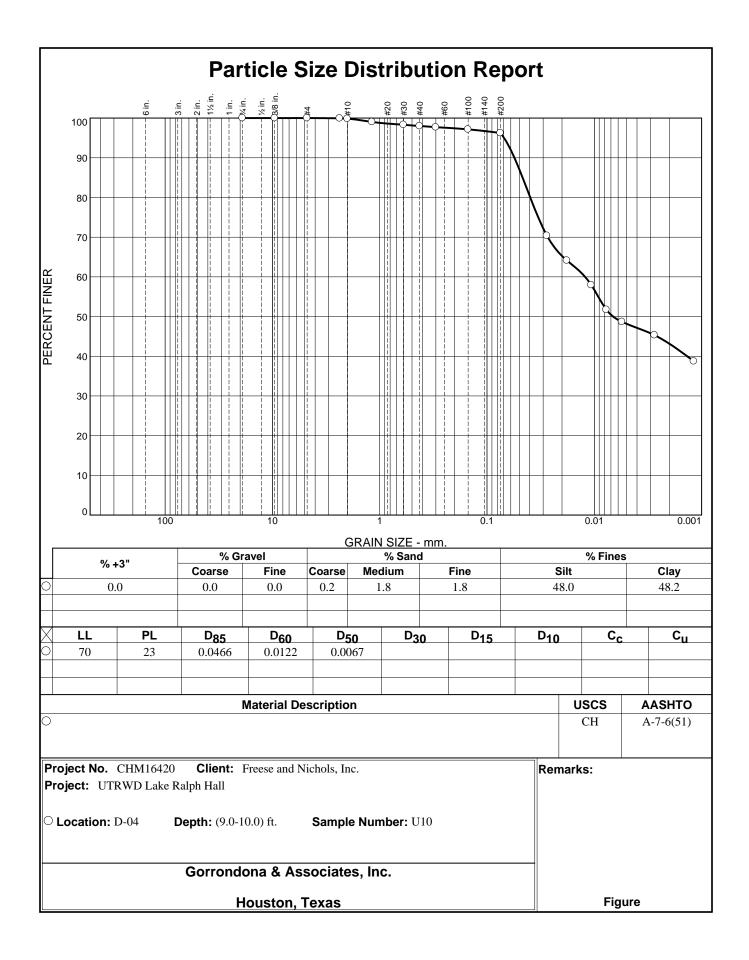
Percent passing #40 based upon complete sample = 99.6

Weight of hydrometer sample =50

Automatic temperature correction

Composite correction (fluid density and meniscus height) at 20 deg. C = -4

Meniscus correction only = 1.0Specific gravity of solids = 2.67


Hydrometer type = 151H

Hydrometer effective depth equation: L = 16.294964 - 0.2645 x Rm

Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	к	Rm	Eff. Depth	Diameter (mm.)	Percent Finer
2.00	23.7	1.0300	1.0265	0.0130	31.0	8.1	0.0261	84.5
5.00	23.7	1.0270	1.0235	0.0130	28.0	8.9	0.0173	75.0
15.00	23.7	1.0250	1.0215	0.0130	26.0	9.4	0.0103	68.6
30.00	23.8	1.0240	1.0206	0.0130	25.0	9.7	0.0074	65.5
60.00	23.9	1.0230	1.0196	0.0129	24.0	9.9	0.0053	62.3
250.00	23.3	1.0210	1.0175	0.0130	22.0	10.5	0.0027	55.6
1440.00	23.0	1.0170	1.0134	0.0131	18.0	11.5	0.0012	42.7
2880.00	22.5	1.0160	1.0123	0.0132	17.0	11.8	0.0008	39.3

_ Gorrondona & Associates, Inc. _____

				Fra	actional	Compor	nents				
O-hill		Gravel				Sand	1			Fines	
Cobbles	Coarse	Fine	Total	Coar	se Me	dium	Fine	Total	Silt	Clay	Total
0.0	0.0	0.0	0.0	0.1	. ().3	1.1	1.5	36.6	61.9	98.5
-				_							
D ₅	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₄₀ 0.0009	D ₅₀	D ₆₀ 9 0.004		D ₈₅ 0.0267	D 90 0.0341	D ₉₅ 0.0480
Fineness Modulus 0.02											

Client: Freese and Nichols, Inc. **Project:** UTRWD Lake Ralph Hall Project Number: CHM16420 Location: D-04 **Depth:** (9.0-10.0) ft. Liquid Limit: 70 **USCS Classification:** CH

Sample Number: U10 Plastic Limit: 23 **AASHTO Classification:** A-7-6(51)

			Sieve	e Test Data			
Dry Sample and Tare (grams)	Tare (grams)	Cumulative Pan Tare Weight (grams)	Sieve Opening Size	Cumulative Weight Retained (grams)	Percent Finer		
178.07	0.00	0.00	0.75"	0.00	100.0		
			3/8"	0.00	100.0		
			#4	0.00	100.0		
			#8	0.14	99.9		
			#10	0.28	99.8		
			#16	1.73	99.0		
			#30	3.01	98.3		
			#40	3.57	98.0		
			#50	4.12	97.7		
			#100	5.07	97.2		
			#200	6.70	96.2		
			Hvdrom	eter Test Data			

Hydrometer test uses material passing #40

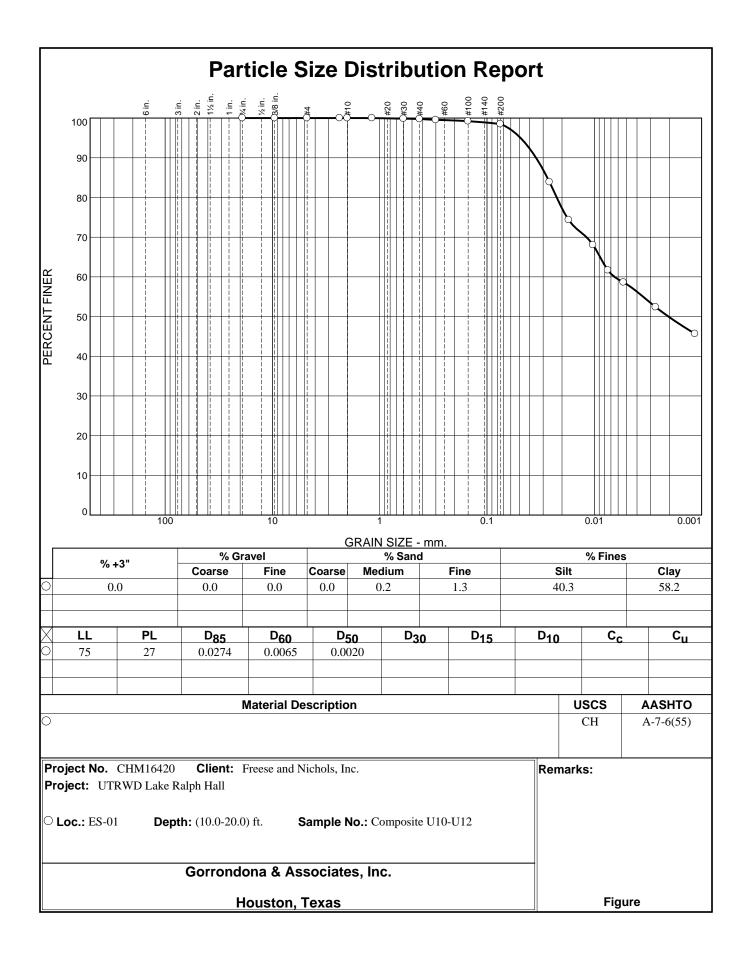
Percent passing #40 based upon complete sample = 98.0

Weight of hydrometer sample = 50.0

Automatic temperature correction

Composite correction (fluid density and meniscus height) at 20 deg. C = -4

Meniscus correction only = 1.0 Specific gravity of solids = 2.68


Hydrometer type = 151H

Hydrometer effective depth equation: L = 16.294964 - 0.2645 x Rm

Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	к	Rm	Eff. Depth	Diameter (mm.)	Percent Finer
2.00	23.6	1.0260	1.0225	0.0129	27.0	9.2	0.0277	70.4
5.00	23.6	1.0240	1.0205	0.0129	25.0	9.7	0.0180	64.1
15.00	23.7	1.0220	1.0185	0.0129	23.0	10.2	0.0107	57.9
30.00	23.8	1.0200	1.0166	0.0129	21.0	10.7	0.0077	51.7
60.00	23.9	1.0190	1.0156	0.0129	20.0	11.0	0.0055	48.7
250.00	23.5	1.0180	1.0145	0.0130	19.0	11.3	0.0028	45.3
1440.00	22.9	1.0160	1.0124	0.0131	17.0	11.8	0.0012	38.7

_ Gorrondona & Associates, Inc. _____

Fractional Components													
<u></u>		Gravel				San	d				Fines		
Cobbles	Coarse	Fine	Total	Coar	se M	ledium	Fine	T	otal	Silt	Clay	Total	
0.0	0.0	0.0	0.0	0.2	2	1.8	1.8		3.8	48.0	48.2	96.2	
										1			
D5	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D 40	D 50 4 0.006			D 80 0.0395	D 85 0.0466	D ₉₀ 0.0555	D ₉₅ 0.0693	
Fineness Modulus 0.08	I.												

Client: Freese and Nichols, Inc. **Project:** UTRWD Lake Ralph Hall Project Number: CHM16420 Location: ES-01 **Depth:** (10.0-20.0) ft. Liquid Limit: 75 **USCS Classification:** CH

Sample Number: Composite U10-U12 Plastic Limit: 27 AASHTO Classification: A-7-6(55)

			Sieve	e Test Data		
Dry Sample and Tare (grams)	Tare (grams)	Cumulative Pan Tare Weight (grams)	Sieve Opening Size	Cumulative Weight Retained (grams)	Percent Finer	
175.33	0.00	0.00	0.75"	0.00	100.0	
			3/8"	0.00	100.0	
			#4	0.00	100.0	
			#8	0.00	100.0	
			#10	0.00	100.0	
			#16	0.02	100.0	
			#30	0.26	99.9	
			#40	0.43	99.8	
			#50	0.82	99.5	
			#100	1.38	99.2	
			#200	2.62	98.5	

Hydrometer test uses material passing #40

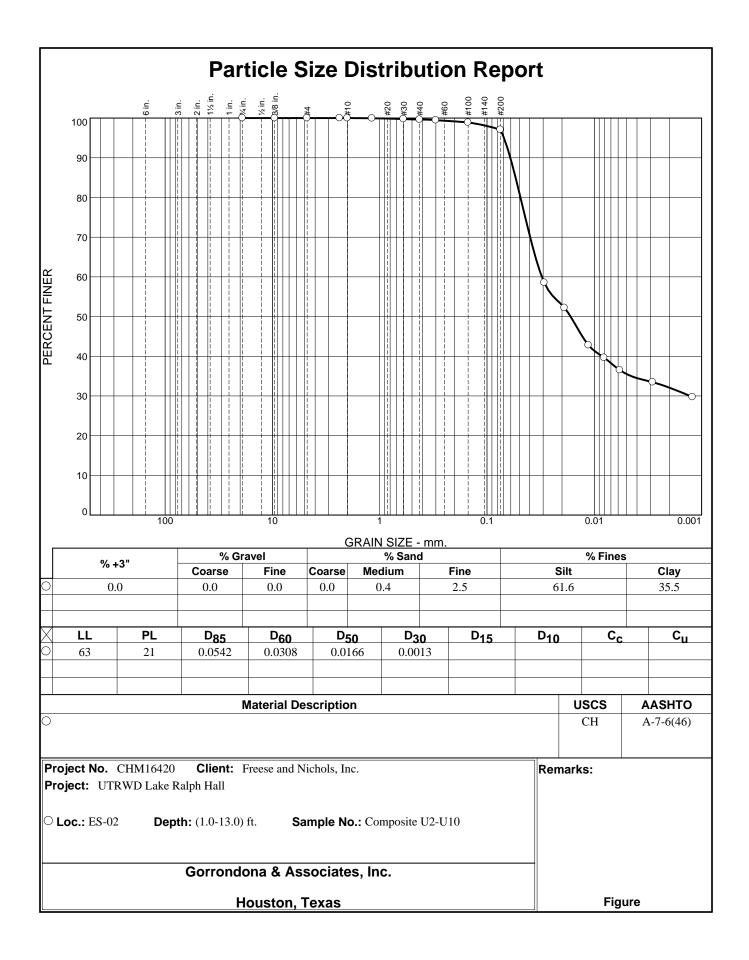
Percent passing #40 based upon complete sample = 99.8

Weight of hydrometer sample = 50.0

Automatic temperature correction

Composite correction (fluid density and meniscus height) at 20 deg. C = -4

Meniscus correction only = 1.0 Specific gravity of solids = 2.69


Hydrometer type = 151H

Hydrometer effective depth equation: L = 16.294964 - 0.2645 x Rm

Temp. (deg. C.)	Actual Reading	Corrected Reading	к	Rm	Eff. Depth	Diameter (mm.)	Percent Finer
23.0	1.0300	1.0264	0.0130	31.0	8.1	0.0261	83.9
23.0	1.0270	1.0234	0.0130	28.0	8.9	0.0173	74.3
23.1	1.0250	1.0214	0.0130	26.0	9.4	0.0103	68.0
23.1	1.0230	1.0194	0.0130	24.0	9.9	0.0075	61.7
23.3	1.0220	1.0185	0.0130	23.0	10.2	0.0053	58.6
23.5	1.0200	1.0165	0.0129	21.0	10.7	0.0027	52.4
22.8	1.0180	1.0144	0.0130	19.0	11.3	0.0012	45.7
	(deg. C.) 23.0 23.0 23.1 23.1 23.3 23.5	(deg. C.)Reading23.01.030023.01.027023.11.025023.11.023023.31.022023.51.0200	(deg. C.)ReadingReading23.01.03001.026423.01.02701.023423.11.02501.021423.11.02301.019423.31.02201.018523.51.02001.0165	(deg. C.)ReadingReadingK23.01.03001.02640.013023.01.02701.02340.013023.11.02501.02140.013023.11.02301.01940.013023.31.02201.01850.013023.51.02001.01650.0129	(deg. C.)ReadingReadingKRm23.01.03001.02640.013031.023.01.02701.02340.013028.023.11.02501.02140.013026.023.11.02301.01940.013024.023.31.02201.01850.013023.023.51.02001.01650.012921.0	(deg. C.)ReadingReadingKRmDepth23.01.03001.02640.013031.08.123.01.02701.02340.013028.08.923.11.02501.02140.013026.09.423.11.02301.01940.013024.09.923.31.02201.01850.013023.010.223.51.02001.01650.012921.010.7	(deg. C.)ReadingReadingKRmDepth(mm.)23.01.03001.02640.013031.08.10.026123.01.02701.02340.013028.08.90.017323.11.02501.02140.013026.09.40.010323.11.02301.01940.013024.09.90.007523.31.02201.01850.013023.010.20.005323.51.02001.01650.012921.010.70.0027

_ Gorrondona & Associates, Inc. _____

_____ Gorrondona & Associates, Inc. _____

Client: Freese and Nichols, Inc. **Project:** UTRWD Lake Ralph Hall Project Number: CHM16420 Location: ES-02 **Depth:** (1.0-13.0) ft. Liquid Limit: 63 **USCS Classification:** CH

Sample Number: Composite U2-U10 Plastic Limit: 21 **AASHTO Classification:** A-7-6(46)

			Sieve	e Test Data			
Dry Sample and Tare (grams)	Tare (grams)	Cumulative Pan Tare Weight (grams)	Sieve Opening Size	Cumulative Weight Retained (grams)	Percent Finer		
354.61	0.00	0.00	0.75"	0.00	100.0		
			3/8"	0.00	100.0		
			#4	0.00	100.0		
			#8	0.00	100.0		
			#10	0.00	100.0		
			#16	0.18	99.9		
			#30	0.87	99.8		
			#40	1.33	99.6		
			#50	1.94	99.5		
			#100	3.88	98.9		
			#200	10.33	97.1		
			Hydrom	eter Test Data			

Hydrometer test uses material passing #40

Percent passing #40 based upon complete sample = 99.6

Weight of hydrometer sample = 50.0

Automatic temperature correction

Composite correction (fluid density and meniscus height) at 20 deg. C = -4

Meniscus correction only = 1.0 Specific gravity of solids = 2.69

Hydrometer type = 151H

Hydrometer effective depth equation: L = 16.294964 - 0.2645 x Rm

Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	к	Rm	Eff. Depth	Diameter (mm.)	Percent Finer
2.00	23.3	1.0220	1.0185	0.0130	23.0	10.2	0.0293	58.6
5.00	23.3	1.0200	1.0165	0.0130	21.0	10.7	0.0190	52.2
15.00	23.5	1.0170	1.0135	0.0129	18.0	11.5	0.0113	42.8
30.00	23.5	1.0160	1.0125	0.0129	17.0	11.8	0.0081	39.6
60.00	23.6	1.0150	1.0115	0.0129	16.0	12.1	0.0058	36.5
250.00	23.8	1.0140	1.0106	0.0129	15.0	12.3	0.0029	33.5
1440.00	22.8	1.0130	1.0094	0.0130	14.0	12.6	0.0012	29.7

_ Gorrondona & Associates, Inc. _____

_____ Gorrondona & Associates, Inc. _____

APPENDIX A-4

EXISTING DATA

PRELIMINARY SUBSURFACE EXPLORATION

Ralph Hall Dam Fannin County, Texas

Project 53882 June 21, 2005

June 21, 2005 Project 53882

Mr. John Levitt, P.E. Chiang, Patel & Yerby, Inc. 1820 Regal Row, Suite 200 Dallas, Texas 75235

Subject: Preliminary Subsurface Exploration Ralph Hall Dam Fannin County, Texas

Dear Mr. Levitt:

Attached are results of field exploration and laboratory testing performed at the proposed site of the Ralph Hall Dam in Fannin County, Texas. This report actually constitutes a data report regarding initial site subsurface exploration. The site appears to be consistent with anticipated materials and an initial Geological Characteristics report written by Chiang, Patel & Yerby in February 2004. The primary foundation materials are suitable for construction of the dam, according to the preliminary core borings.

As the design planning proceeds, we shall be available to assist you.

Sincerely,

KLEINFELDER

Michael M. Shiflett, P.E.

Copies Submitted: 5

Preliminary Subsurface Exploration

Ralph Hall Dam Fannin County, Texas

Prepared for

Chiang, Patel & Yerby, Inc.

June 21, 2005

PRO DONALD U. JAMES Michael M. Shi ames, P.G ON E Kleinfelder Fort Worth, Texas An employee owned company

Project 53882

Copyright 2005 Kleinfelder All Rights Reserved

UNAUTHORIZED USE OR COPYING OF THIS DOCUMENT IS STRICTLY PROHIBITED BY ANYONE OTHER THAN THE CLIENT FOR THE SPECIFIC PROJECT.

Photograph No. 1

Viewing easterly at Boring 1. Electrical restivity log equipment shown.

April 7, 2005

Photograph No. 2

Viewing easterly at Boring 3. Electrical restivity log equipment shown.

April 9, 2005

SITE PHOTOGRAPHS Ralph Hall Dam Preliminary Fannin County, Texas Project 53882 June 2005

Photograph No. 3

Arcuate parallel jointing in unweathered Ozan, south of channel at Merrill Creek.

April 9, 2005

Photograph No. 4

Orthogonal limonitic stained joints in Ozan at Merrill Creek.

April 9, 2005

KLEINFELDER

Photograph No. 5

Slaked, unweathered Ozan at Merrill Creek.

April 9, 2005

SITE PHOTOGRAPHS Ralph Hall Dam Preliminary Fannin County, Texas Project 53882 June 2005

Important Information About Your Geotechnical Engineering Report

Subsurface problems are a principal cause of construction delays, cost overruns, claims, and disputes.

The following information is provided to help you manage your risks.

Geotechnical Services Are Performed for Specific Purposes, Persons, and Projects

Geotechnical engineers structure their services to meet the specific needs of their clients. A geotechnical engineering study conducted for a civil engineer may not fulfill the needs of a construction contractor or even another civil engineer. Because each geotechnical engineering study is unique, each geotechnical engineering report is unique, prepared *solely* for the client. No one except you should rely on your geotechnical engineering report without first conferring with the geotechnical engineer who prepared it. *And no one* — *not even you* — should apply the report for any purpose or project except the one originally contemplated.

Read the Full Report

Serious problems have occurred because those relying on a geotechnical engineering report did not read it all. Do not rely on an executive summary. Do not read selected elements only.

A Geotechnical Engineering Report Is Based on A Unique Set of Project-Specific Factors

Geotechnical engineers consider a number of unique, project-specific factors when establishing the scope of a study. Typical factors include: the client's goals, objectives, and risk management preferences; the general nature of the structure involved, its size, and configuration; the location of the structure on the site; and other planned or existing site improvements, such as access roads, parking lots, and underground utilities. Unless the geotechnical engineer who conducted the study specifically indicates otherwise, do not rely on a geotechnical engineering report that was:

- not prepared for you,
- not prepared for your project,
- not prepared for the specific site explored, or
- completed before important project changes were made.

Typical changes that can erode the reliability of an existing geotechnical engineering report include those that affect:

 the function of the proposed structure, as when it's changed from a parking garage to an office building, or from a light industrial plant to a refrigerated warehouse,

- elevation, configuration, location, orientation, or weight of the proposed structure,
- composition of the design team, or
- project ownership.

As a general rule, *always* inform your geotechnical engineer of project changes—even minor ones—and request an assessment of their impact. *Geotechnical engineers cannot accept responsibility or liability for problems that occur because their reports do not consider developments of which they were not informed.*

Subsurface Conditions Can Change

A geotechnical engineering report is based on conditions that existed at the time the study was performed. *Do not rely on a geotechnical engineering report* whose adequacy may have been affected by: the passage of time; by man-made events, such as construction on or adjacent to the site; or by natural events, such as floods, earthquakes, or groundwater fluctuations. *Always* contact the geotechnical engineer before applying the report to determine if it is still reliable. A minor amount of additional testing or analysis could prevent major problems.

Most Geotechnical Findings Are Professional Opinions

Site exploration identifies subsurface conditions only at those points where subsurface tests are conducted or samples are taken. Geotechnical engineers review field and laboratory data and then apply their professional judgment to render an opinion about subsurface conditions throughout the site. Actual subsurface conditions may differ—sometimes significantly— from those indicated in your report. Retaining the geotechnical engineer who developed your report to provide construction observation is the most effective method of managing the risks associated with unanticipated conditions.

A Report's Recommendations Are Not Final

Do not overrely on the construction recommendations included in your report. *Those recommendations are not final*, because geotechnical engineers develop them principally from judgment and opinion. Geotechnical engineers can finalize their recommendations only by observing actual

subsurface conditions revealed during construction. *The geotechnical* engineer who developed your report cannot assume responsibility or liability for the report's recommendations if that engineer does not perform construction observation.

A Geotechnical Engineering Report Is Subject to Misinterpretation

Other design team members' misinterpretation of geotechnical engineering reports has resulted in costly problems. Lower that risk by having your geotechnical engineer confer with appropriate members of the design team after submitting the report. Also retain your geotechnical engineer to review pertinent elements of the design team's plans and specifications. Contractors can also misinterpret a geotechnical engineer in prebid and preconstruction conferences, and by providing construction observation.

Do Not Redraw the Engineer's Logs

Geotechnical engineers prepare final boring and testing logs based upon their interpretation of field logs and laboratory data. To prevent errors or omissions, the logs included in a geotechnical engineering report should *never* be redrawn for inclusion in architectural or other design drawings. Only photographic or electronic reproduction is acceptable, *but recognize that separating logs from the report can elevate risk.*

Give Contractors a Complete Report and Guidance

Some owners and design professionals mistakenly believe they can make contractors liable for unanticipated subsurface conditions by limiting what they provide for bid preparation. To help prevent costly problems, give contractors the complete geotechnical engineering report, *but* preface it with a clearly written letter of transmittal. In that letter, advise contractors that the report was not prepared for purposes of bid development and that the report's accuracy is limited; encourage them to confer with the geotechnical engineer who prepared the report (a modest fee may be required) and/or to conduct additional study to obtain the specific types of information they need or prefer. A prebid conference can also be valuable. *Be sure contractors have sufficient time* to perform additional study. Only then might you be in a position to give contractors the best information available to you, while requiring them to at least share some of the financial responsibilities stemming from unanticipated conditions.

Read Responsibility Provisions Closely

Some clients, design professionals, and contractors do not recognize that geotechnical engineering is far less exact than other engineering disciplines. This lack of understanding has created unrealistic expectations that

have led to disappointments, claims, and disputes. To help reduce the risk of such outcomes, geotechnical engineers commonly include a variety of explanatory provisions in their reports. Sometimes labeled "limitations" many of these provisions indicate where geotechnical engineers' responsibilities begin and end, to help others recognize their own responsibilities and risks. *Read these provisions closely.* Ask questions. Your geotechnical engineer should respond fully and frankly.

Geoenvironmental Concerns Are Not Covered

The equipment, techniques, and personnel used to perform a *geoenviron-mental* study differ significantly from those used to perform a *geotechnical* study. For that reason, a geotechnical engineering report does not usually relate any geoenvironmental findings, conclusions, or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. *Unanticipated environmental problems have led to numerous project failures.* If you have not yet obtained your own geoenvironmental information, ask your geotechnical consultant for risk management guidance. *Do not rely on an environmental report prepared for someone else.*

Obtain Professional Assistance To Deal with Mold

Diverse strategies can be applied during building design, construction, operation, and maintenance to prevent significant amounts of mold from growing on indoor surfaces. To be effective, all such strategies should be devised for the express purpose of mold prevention, integrated into a comprehensive plan, and executed with diligent oversight by a professional mold prevention consultant. Because just a small amount of water or moisture can lead to the development of severe mold infestations, a number of mold prevention strategies focus on keeping building surfaces dry. While groundwater, water infiltration, and similar issues may have been addressed as part of the geotechnical engineering study whose findings are conveyed in this report, the geotechnical engineer in charge of this project is not a mold prevention consultant; none of the services performed in connection with the geotechnical engineer's study were designed or conducted for the purpose of mold prevention. Proper implementation of the recommendations conveyed in this report will not of itself be sufficient to prevent mold from growing in or on the structure involved.

Rely, on Your ASFE-Member Geotechncial Engineer for Additional Assistance

Membership in ASFE/The Best People on Earth exposes geotechnical engineers to a wide array of risk management techniques that can be of genuine benefit for everyone involved with a construction project. Confer with you ASFE-member geotechnical engineer for more information.

8811 Colesville Road/Suite G106, Silver Spring, MD 20910 Telephone: 301/565-2733 Facsimile: 301/589-2017 e-mail: info@asfe.org www.asfe.org

Copyright 2004 by ASFE, Inc. Duplication, reproduction, or copying of this document, in whole or in part, by any means whatsoever, is strictly prohibited, except with ASFE's specific written permission. Excerpting, quoting, or otherwise extracting wording from this document is permitted only with the express written permission of ASFE, and only for purposes of scholarly research or book review. Only members of ASFE may use this document as a complement to or as an element of a geotechnical engineering report. Any other firm, individual, or other entity that so uses this document without being an ASFE member could be committing negligent or intentional (fraudulent) misrepresentation.

TABLE OF CONTENTS

1.	INTRODUCTION	1
2.	FIELD EXPLORATION	2
3.	LABORATORY TESTING	5
4.	ANALYSIS AND RECOMMENDATIONS	6
	4.1 Site Geology	
	4.2 Stratigraphy	7
	4.3 Testing of Strata4.4 Groundwater Observations	
	4.4 Groundwater Observations	9
5.	CONCLUSIONS	
6.	RECOMMENDATIONS	
7.	REPORT CLOSURE	

APPENDIX

Vicinity Map	Plate 1
Plan of Borings	
General Notes	
Logs of Borings (B-01 through B-04)	Plates 4 - 7
Electrical Resistivity Readings	Plates 8 - 11
Summary of Laboratory Test Results	Plate 12
Generalized Subsurface Profile	Plate 13
Unit Dry Weight Trend Analyses (B-01 through B-03)	Plates 14 - 16

1. INTRODUCTION

The Upper Trinity Regional Water District is in the preliminary stages of planning for Lake Ralph Hall. The proposed site of the dam and reservoir is on the North Sulphur River near Ladonia, Texas in southeastern Fannin County. Chiang, Patel & Yerby, Inc. is under contract with the District to provide initial planning and engineering for the dam and reservoir. A portion of the initial phases has been to provide preliminary subsurface, exploratory borings along the dam alignment to observe the subsurface conditions. Chiang, Patel & Yerby contracted with Kleinfelder to perform the subsurface borings and laboratory testing, which are being reported in this document.

In February 2004, CP&Y submitted a report, Geological Characteristics, to the District. This preliminary report presented general information regarding Regional Geologic Setting, Site Geology, Foundation Considerations, Surface and Groundwater discussions, and Natural Resources. While this current preliminary subsurface investigation has been limited to drilling four exploratory borings along the proposed dam centerline alignment and has therefore provided limited information and data, the subsurface information developed at the site is consistent with anticipated materials and the CP&Y report.

The Geologic Characteristics report states that for planning purposes, the dam will be a zoned earth-fill embankment, with a principal spillway, an emergency overflow spillway outlet, and a gated low-flow outlet structure. An embankment at this site with a crest elevation of 560 feet will be approximately 12,000 feet in length.

This preliminary report presents information regarding site exploration and methods, as well as results of laboratory tests performed on samples recovered from the borings. As the subsurface information is developed, design information and data will evolve regarding abutment slopes and core or slurry trench in the valley section.

1

2. FIELD EXPLORATION

Subsurface materials at the project site were explored by four borings drilled to depths of 60 to 100 feet along the proposed alignment of the dam. The borings were drilled on April 6, 7, 8, and 9, 2005 at the approximate locations shown on the Plan of Borings in the Appendix, Plate 2. The boring logs are also included in the Appendix on Plates 4 through 7, and a key to terms and descriptions on the logs is provided on Plate 3.

The four borings drilled along the proposed embankment alignment were located on property that had provided permission for access and also provided boring coverage near both the north and south abutments, as well as two borings within the valley section.

Boring	Ground Surface	State Plane	Station along	
No.	Elevation, feet	Northing	Easting	Centerline
1	550	7221152.2556	2760734.7425	25+00 ±
2	502.6	7223918.0356	2760674.3652	$53{+}00~\pm$
3	506.3	7226935.2921	2760645.3818	$82{+}70~\pm$
4	564.2	7232423.3545	2760451.3557	North end

 Table 1. Boring Locations

The borings locations were surveyed after the field operations were completed. The field survey was provided by The Wallace Group, Inc.

The borings were drilled using rotary drilling procedures and water as the drilling fluid. The drilling rig was mounted upon an articulating all-terrain vehicle (ATV) for access across the undeveloped property. The drilling operations were overseen by Mr. Donald James, P.G. Samples were logged and preserved in the field by Mr. James. Samples were logged for material type, color, and consistency; sealed in sheet plastic for moisture preservation; and transferred to the geotechnical laboratory.

Relatively undisturbed samples of cohesive soils encountered in the borings were taken by rapidly pushing a 3-inch OD thin-wall Shelby tube sampler (ASTM D 1587) a distance of approximately 1 foot into the soil using hydraulic pressure from the drill rig. Depths at which

these samples were taken are designated "U" in the "Samples" column of the boring logs. After a Shelby tube was recovered from a boring, the sample was extruded in the field, examined visually and logged. A representative portion was selected, wrapped and sealed to prevent loss of moisture and to protect the sample during transportation. Estimates of the consistency of the cohesive soil samples were obtained in the field using a hand penetrometer. The result of a hand penetrometer reading is recorded at a corresponding depth in the "Hand Penetrometer, tsf" column of the boring logs. When the capacity of the hand penetrometer is exceeded, the value of 4.5+ is recorded.

The primary materials of the formation at the site are marl and were sampled using an NX-size double-tube core barrel fitted with a carbide bit. The lengths of marl cored by each "core run" are indicated within the "Samples" column, and the percents of core recovery are recorded on the boring logs in the appropriately marked columns. Rock Quality Designations (RQD) were measured for each core run, calculated and recorded in the field. The percent recovery is defined as the total length of material recovered in a specific core run divided by the total length of the core run. The RQD is a modified core recovery percentage in which all pieces of sound core over 4 inches long are summed and divided by the length of the core run. Core breaks caused by the drilling process were fitted together and counted as one piece. Where it was difficult to discern natural breaks from drilling breaks, the break was considered a natural break. The RQD designation is a method of quantifying the integrity or competency of the material being cored, being based upon the weathered or fractured condition of the material. The RQD values are presented on the Logs of Borings for each core run interval. The core run intervals for the project were typically 5 feet in length and are delineated on the boring logs.

RQD	Rock Quality
Less than 25	Very Poor
25 - 50	Poor
50 - 75	Fair
75 – 90	Good
90 - 100	Excellent

Table 2. Classification of Rock by RQD Value

All samples were extruded in the field, visually classified, sealed and packaged for transportation.

During coring of the marl in Boring 4, the catcher that secures the rock core within the core barrel became damaged and prevented core recovery below 60 feet. Therefore, in-place penetrometer tests were performed within the marl as the boring was advanced as a method of measuring marl consistency within the explored depth. The Texas Department of Transportation (TxDOT) cone penetrometer test utilizes a 3-inch steel cone driven by a 170-pound hammer dropped 24 inches. Either the number of blows required to produce 12 inches of penetration, or the inches of penetration due to 100 blows of the hammer are noted on the boring logs designated "T" in the "Penetration Resistance" column.

The general drilling procedures for these 4 preliminary borings included using a single flight auger to advance the boring between the undisturbed soil samples in the upper 15 feet, and then introducing water as drilling fluid to assist drilling advancement below the 15-foot depth.

After drilling and sampling, each borehole was electric logged for spontaneous potential, natural gamma, and resistivity. The electric logging was accomplished using a Century Geophysics 9060 logging tool. Although the electric logs were run for the entire length of each boring, the encoder value resulted in the lower halves of the borings, within the primary marl, being logged and recorded. The results of the Electrical Resistivity Readings are presented on a series of Logs of Borings presented in the Appendix on Plates 8 through 11.

Each boring was backfilled with soil cuttings, incorporating bentonite chips for a surface seal.

3. LABORATORY TESTING

Selected laboratory soil tests were performed on representative samples recovered from the borings. In addition to the classification tests (liquid limits, plastic limits, and percent passing #200 sieve), selected samples were tested for unconfined compressive strength, unit dry weight, and moisture content. Results of the laboratory tests are provided on each boring log, a summary table and on individual Plates presented in the Appendix.

Soil and rock descriptions used on the boring logs result from field data as well as from laboratory test data.

4. ANALYSIS AND RECOMMENDATIONS

4.1 SITE GEOLOGY

The regional geology was presented by Chiang, Patel & Yerby in the Geological Characteristics Report. A brief discussion of the geology across the proposed alignment of the earthen dam is now being presented as observed within the four coring borings. The proposed site is situated across a mature stream valley, the North Sulphur River Basin. The North Sulphur River trends west to east with gently rolling grade breaks bounding the northern and southern banks. The original North Sulphur River was bypassed with rechannelization during the 1920s resulting in rejuvenation of the river hydraulics and incisement of the current river channel.

The primary material beneath this river valley is documented as Cretaceous age Taylor Group, particularly the Ozan Formation. Younger sediments of Quarternary age line and fill the scour zone within the Ozan made by the original North Sulphur River.

The Ozan Formation is the lowest member of the Taylor Group and forms most of the "primary" bedrock beneath the study area. The Ozan consists of up to 425 feet of bluish-gray, calcareous clays (marl) and mudstones with occasional thin, sandy layers. The basal portion contains phosphate nodules. Unweathered Ozan is indurated, rock-like material. The Ozan weathers into light gray shale and light yellow-brown shaly clay and judging from exposures in the creek bottoms, ravels rather quickly once exposed to weathering.

Joints observed in the Ozan occur in several modes as observed during our site visits including: orthogonal joints that intersected at relatively high angles (see photograph no. 4) and were often weathered with limonite staining and gypsum infills; platy joints more or less emulating shaly cleavage upon weathering; and arcuate jointing observed in sub-parallel sets with low angle dip (see photograph no. 3). A joint and fracture trace analysis was beyond the scope of this study. These observations were made upstream from the proposed dam within the Merrill Creek channel crossing at FM 1550. The channel erosion had exposed Ozan marl within the bottom of the tributary and it was within this channel that photographs were taken and the above observations made.

4.2 STRATIGRAPHY

Boring 1 (located at the southern end of the site) encountered a thick sequence of colluvial and alluvial sandy clay and clay to a depth of approximately 47 feet. From 47 feet to approximately 53 feet the boring encountered weathered Ozan formation material, which consists of a yellow-brown and light gray inducated calcareous clay (marl) exhibiting high angle joints and stained with limonite. Fossil Inoceramus clam imprints were observed in this weathered zone material. From 53 feet to the total depth of 85 feet the boring encountered unweathered marl that is gray to dark gray, massive, and very inducated.

Boring 2 (located just south of the original river channel) encountered dark brown alluvial clay with occasional sand partings and clay infilled burrows (probably from crayfish). Calcareous accretions (caliche) were observed from approximately 4 to 8 feet depth. Below 22 feet the soil became sandier with sand partings and seams, and soil color turned to light yellow-brown and light brown. From 32 feet to the total depth the boring encountered unweathered marl that is gray to dark gray, massive, and indurated.

Boring 3 (located north of the realigned river channel and on the raised, earthen county road) encountered approximately 3 feet of hard road fill clay. Below 3 feet the boring encountered light brownish-gray and light yellow-brown firm to stiff alluvial clay to approximately 12 feet. From 12 to 14¹/₂ feet the boring encountered medium dense alluvial clayey sand. From 14¹/₂ to approximately 23 feet the boring encountered weathered Ozan formation material that consists of hard yellow-brown and gray indurated calcareous clay (marl) that was fissile and contained root-invaded joints and gypsum infills. Hard dark gray unweathered Ozan marl was encountered from 23 feet to the total depth of 60 feet. Below 57 feet the marl exhibited weak cementation, contained a high angle joint and some coarse phosphatic sand grains.

Boring 4 was drilled approximately 30 feet west of the dam centerline to avoid a possible phone utility. The surficial 3 feet encountered sandy clay that had been reworked as probable fill material. From 3¹/₄ feet to approximately 12 feet depth the boring encountered colluvial and alluvial brown to light brown-gray hard clay. Calcareous accretions (caliche) were observed in the soil samples from approximately 4 to 8 feet depth. From 12 feet to approximately 40 feet the boring encountered weathered Ozan formation material that consists of hard yellow-brown and gray indurated calcareous clay (marl) that was fissile. Gypsum infills were observed in the weathered Ozan samples below 24 feet depth. Below 40 feet the boring encountered hard dark gray unweathered Ozan marl.

The surficial soils vary between clay of low plasticity, CL, to clay of high plasticity, CH, according to the Unified Soil Classification System. As is expected within alluvial soils, the material types vary, and thus the plasticity of the recovered soil samples was observed to vary.

Boring 1 near the southern abutment encountered a thin layer of coarse subrounded gravel overlying the weathered marl. Boring 3 revealed a layer of clayey sand atop the weathered marl, while Borings 2 and 4 did not encounter a distinct, identifiable layer of coarse material above the marl. Boring 2 drilled near the original river channel encountered 32 feet of CH clay over dark gray marl, indicating that at some previous time, the river channel had cut through the weathered marl exposing the unweathered gray marl. These preliminary borings have not exposed well-defined, coarse-grained strata deposits above the primary marl, as is commonly found within alluvial soils.

4.3 TESTING OF STRATA

Field electrical resistivity tests were performed within the core borings in an attempt to identify geologic marker beds within the subsurface materials across the river valley and to determine if subsurface anomalies, including faulting, occur within the valley that would influence design of the dam.

The downhole electrical testing performed in the widely spaced borings did not identify discernable discontinuities or anomalies with sufficient signature definition to correlate the strata across the valley. However, electrical surveys obtained from the preliminary borings will be useful in comparing to electric log data obtained from future, more closely spaced borings along the centerline. This information will be helpful in determining geologic structure at the project site.

The readings as presented upon the logs of borings are fairly consistent for the depths tested. The Gamma log is generally useful for defining shale beds when the SP curve is rounded. The Gamma log reflects the proportion of shale and can occasionally be used as an indicator of shale content. The Spontaneous-Potential (SP) curve is useful to detect permeable beds and to give qualitative indications of bed shalyness. The Resistivity log can identify differing beds of material and thickness. Since the electrical resistivity readings were basically taken within one material type, discontinuities or material differences would be expected to be slight and difficult to discern. The fluctuations recorded from these electrical resistivity readings are considered to be slight and within the normal variance ranges for the marl. Recovered samples from the marl were tested in the laboratory for unit weight, moisture content, and unconfined compression. The variance within the unconfined compressive strength is commonly observed and is attributed to joints within the material that provide preferential shearing paths during compression loads when the sample is unconfined in this particular test. The higher values are indicative of the competent marl that does not include a joint set, while the lower strength values indicate failure of the test specimen along a fracture, joint surface. Of interest and probably more indicative of the marl condition is the unit dry weight values as measured in the laboratory test. Although not drastically different, the unit weights of the weathered marl are slightly less than the unit weights of the unweathered marl. The weathered marl is yellow-brown and light gray while the unweathered marl is gray. The unit weights are indicators of the higher strength and consistency of the unweathered portion of the formation.

4.4 GROUNDWATER OBSERVATIONS

A detailed groundwater study has not been performed as a portion of this preliminary subsurface exploration. However, a few observations and comments are provided. Observation wells and piezometers will be installed during the design phase subsurface exploration program that will allow measurements of groundwater. Specific remarks regarding drilling and groundwater observations are presented at the bottoms of the logs of borings.

Each of the borings introduced water used as drilling fluid into the core borings.

- Boring 1 lost drilling fluid at the 26-foot depth, indicating a sand layer or fracture zone through which the drilling fluid was lost.
- Boring 2 was bailed of drilling fluid to the 21-foot depth upon completion of the drilling and sampling; after 20 hours, water was measured near 8 feet. As noted by the hand penetrometer readings, the soils between 25 and 32 feet (marl), are moist and probably indicative of groundwater within the valley section perched upon the less permeable underlying marl. Also note some sandy zones directly above the marl.
- Boring 3 encountered seepage at 14 feet prior to the introduction of water as drilling fluid. A layer of light gray-brown clayey sand occurs between 12 and 14¹/₂ feet and it is within this permeable layer, atop the less permeable marl that groundwater seepage was noted.

• Boring 4 was bailed to 44 feet and after 20 hours, the boring contained water up to the 39-foot depth. This water was likely drill water seeping from the clay mass. There was no distinct permeable sand or gravel layer encountered by Boring 4.

Within the lower valley section, we would expect to be able to measure a distinct groundwater zone atop the less permeable marl, which will serve as an underlying aquitard or boundary upon which shallow groundwater will be perched. A definite groundwater study will provide information on the presence of groundwater, depth, pressure, and fluctuations during seasonal moisture cycles.

5. CONCLUSIONS

While the main purpose of this preliminary geotechnical data report has been to develop preliminary subsurface data, there are several items that have been observed and can be stated as conclusions.

The referenced Geological Characteristics of Proposed Lake Ralph Hall by Chiang, Patel & Yerby (February 6, 2004) presents general overview information of the area. This data report has confirmed the types of information that was presented in the CP&Y report.

The soil types revealed by the four preliminary borings are predominantly CL and CH clays. Boring 3 revealed a clayey sand layer that was 2½ feet thick, and this was the only clayey sand encountered by these preliminary borings. Only minimal amounts of coarse sand and subrounded gravel were found deposited upon the primary marl.

Therefore, based upon the completion of the four preliminary core borings, the site appears to be consistent with anticipated materials and the mentioned report. The subsurface materials are suitable for construction of the earth-fill dam and appurtenant structures, according to the preliminary core borings. There also appears to be soils within the proposed reservoir area that are low permeability. The alluvial soils and the primary materials of the Ozan Formation appear to be suitably tight and of low permeability to retain water.

6. **RECOMMENDATIONS**

Four exploratory borings have been drilled to provide preliminary subsurface conditions across the river valley. Detailed design memorandum drilling and laboratory testing will be required to provide detailed subsurface conditions necessary for design.

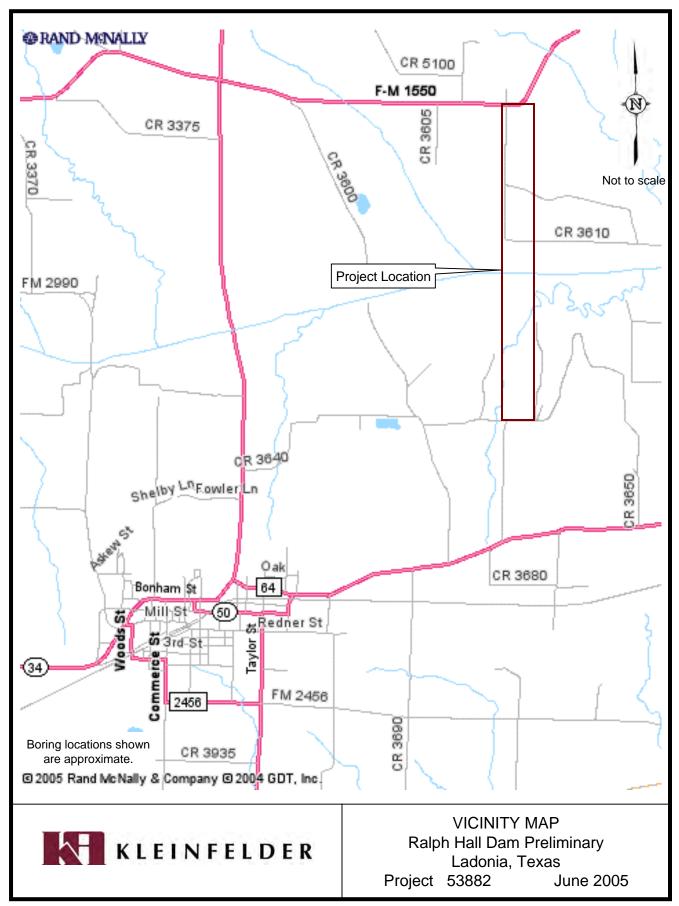
Numerous detailed design issues regarding subsurface conditions will be addressed during design of the dam. As the design details are considered, it is recommended that a joint and fracture trace analysis be performed. The discussion regarding the visual observations of the exposed marl in the bottom of a tributary explains the recommendation for performing the joint and fracture trace analysis.

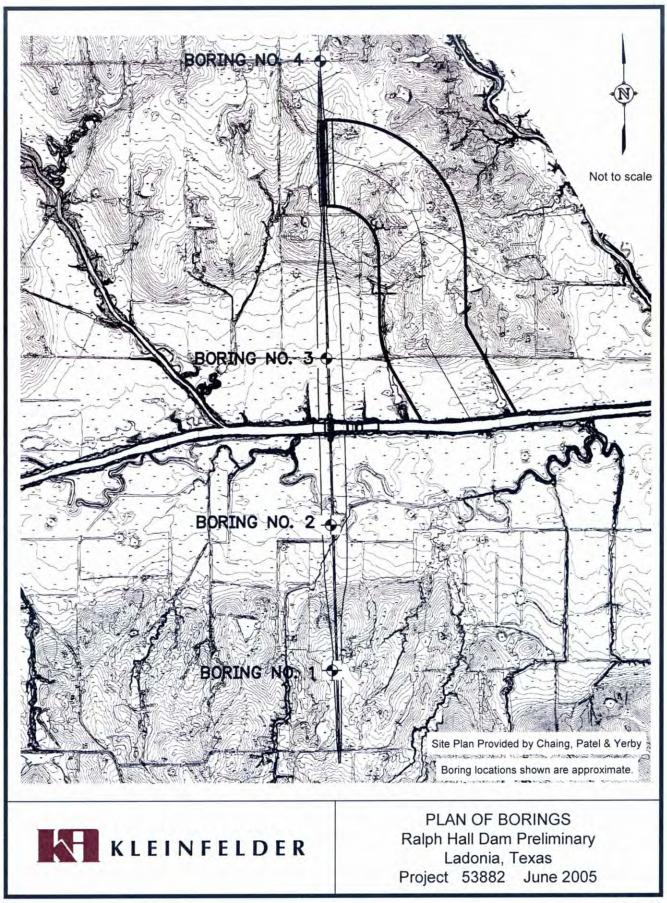
Suitable borrow areas for clay core and various material zones within the earthen dam will need to be located and classified during the detailed design stages. Normally it is attempted to locate these soil borrow areas within the lake area. From the preliminary borings, and from site observations and published geologic maps, it appears that sufficient suitable materials to construct the earthen dam are present on site, but this must be confirmed with additional exploratory borings and testing.

The geotechnical design issues for the dam will be similar to other sites. This preliminary data report has not revealed unusual conditions that would require specialized services not normally performed for projects of this magnitude. As additional geologic and geotechnical information develops, there may arise specific issues that require particular tests and analysis. At this time, such specific items have not been identified.

7. **REPORT CLOSURE**

Recommendations contained in this report are based on our field observations and subsurface explorations, limited laboratory tests, and our present knowledge of the proposed construction. It is possible that soil conditions could vary between or beyond the points explored. If soil conditions are encountered during construction, which differ from those described herein, we should be notified immediately in order that a review may be made and any supplemental recommendations provided. If the scope of the proposed construction, including the proposed loads or structural locations, changes from that described in this report, our recommendations should also be reviewed.


We have prepared this report in substantial accordance with the generally accepted geotechnical engineering practice, as it exists in the site area at the time of our study. No warranty is expressed or implied. The recommendations provided in this report are based on the assumption that an adequate program of tests and observations will be conducted by Kleinfelder during the construction phase in order to evaluate compliance with our recommendations.


This report may be used only by the client and only for the purposes stated, within a reasonable time from its issuance. Land use, site conditions (both on-site and off-site) or other factors may change over time, and additional work may be required. Based on the intended use of the report, Kleinfelder may require that additional work be performed and that an updated report be issued. Non-compliance with any of these requirements by the client or anyone else, unless specifically agreed to in advance by Kleinfelder in writing, will release Kleinfelder from any liability resulting from the use of this report by any unauthorized party.

Other standards or documents referenced in any given standard cited in this report, or otherwise relied upon by the authors of this report, are only mentioned in the given standard; they are not incorporated into it or "included by reference," as that latter term is used relative to contracts or other matters of law.

APPENDIX

GENERAL NOTES

DRILLING AND SAMPLING SYMBOLS:

U / UD	Thin-Walled Tube - 3" O.D., Unless otherwise noted	
А	Auger Sample	
S	Split Spoon - 2" O.D., Unless otherwise noted	
W	Wash Sample	🗴 Water Level Subsequent Measurement
С	Continuous Core Sample	
Р	Push Sample	
Т	THD Cone penetrometer	
D	Denison Sample	
В	Bag Sample	

CONSISTENCY

OF COARSE-GRA	AINED SOILS:	OF FINE-GRAI	NED SOILS:
Penetration Resistance Blows/foot	Relative Density	Hand Penetrometer Readings, tsf	Consistency
0-4	Very Loose	<1	Soft
4-10	Loose	1-2	Firm
10-30	Medium Dense	2-3	Stiff
30-50	Dense	3-4	Very Stiff
over 50	Very Dense	4.5+	Hard

TERMS CHARACTERIZING SOIL STRUCTURE:

RELATIVE DENSITY

Slickensided	:	Having inclined planes of weakness that are slick and glossy in appearance.
Fissured	:	Containing shrinkage cracks, frequently filled with fine sand or silt; usually more or less
		vertical
Laminated	:	Composed of thin layers of varying color and texture.
Interbedded	:	Composed of alternate layers of different soil types.
Calcareous	:	Containing appreciable quantities of calcium carbonate.
Well graded	:	Having wide range in grain sizes and substantial amounts of all intermediate particle sizes.
Poorly graded	:	Predominantly of one grain size, or having a range of sizes with some intermediate size
		missing.
Calcareous Well graded	: : :	Containing appreciable quantities of calcium carbonate. Having wide range in grain sizes and substantial amounts of all intermediate particle sizes. Predominantly of one grain size, or having a range of sizes with some intermediate size

NOTE: Slickensided and fissured clays may have lower unconfined compressive strengths because of planes of weakness or cracks in the soil. The consistency rating of such soils are based on penetrometer readings.

DEGREE OF WEATHERING:

Unweathered	:	Rock in its natural state before being exposed to atmospheric agents.
Slightly weathered	:	Noted predominantly by color change with no disintegrated zones.
Weathered	:	Complete color change with zones of slightly decomposed rock.
Severely weathered	:	Complete color change with consistency, texture, and general appearance approaching
-		soil.

SUBSURFACE CONDITIONS:

Soil and rock descriptions on the boring logs are a compilation of field data as well as from laboratory testing of samples. The stratification lines represent the approximate boundary between materials and the transition can be gradual.

Water level observations have been made in the borings at the times indicated. It must be noted that fluctuations in the groundwater level may occur due to variations in rainfall, hydraulic conductivity of soil strata, construction activity, and other factors.

			LOG	OF BO	RIN	GN	JO.	B-	01							
Projec		escrip	-	eliminary -	- Ladoi	nia, T	exas	5								
Locat			Station 25+00 +/-													
Surfa	ce E	l.:	550.0'			1					1					
Depth	Samples	Symbol/USCS	MATERIAL DESCRI	PTION	Hand Penetrometer, TSF	Penetration Blows / Foot	Core Drilled, ft.	Core Recovered, %	Core RQD	Liquid Limit	Plasticity Index	% Passing No. 200 Sieve	Moisture Content, %	Unit Dry Weight, lb/cu ft	Unc. Compressive Strength, tsf	Strain at Failure, %
	U-1		SANDY CLAY, dark yellow-brown		; 1.0' 0.6											
 - 5 -	U-2 U-3 U-4 U-5		with root filaments CLAY, light brown and dark brown yellow-brown, hard, with iron oxide with root filaments, with occasional - with limonitic stains below 4.5 fee	n, with e stains sand	1.5 4.5+ 4.5+ 4.5+											
	U-6 U-7				4.5+					52	35	89	15 17	112	7.8	1.7
			SANDY CLAY, silty, light brown,	El. 538.0;		- · - · -	- · _ · _	 ··_						- · _ · _		
 - 15 - 	U-8		yellow-brown and light brown-gray dense, mottled with limonite	, medium	4.5+					40	21	63	13			
	U-9		- laminated cross-bedded, less mottl 20 feet		4.5+								17	110		
	<u>U-10</u>		CLAY with sand, yellow-brown and gray-brown, stiff to very stiff, with calcareous webbing and infills, with oxide infills	0	4.1	- · - · -	- · _ · _	- · _ · _		-35	14	86	18	96		
	<u>U-11</u>				2.9								18	113	4.3	7.8
35 -	U-12			El. 513.0; 3	4.2								19	109		
 - 40 - 	<u>U-13</u>		SANDY CLAY, light gray-brown, g yellow-brown, firm to hard, mottled limonite, with iron oxide infills, wit filament holes, faint blocky structur	gray and with h root	1.9		+ · _ · _	· _ · _	· ·	31	9	67	21	107	0.9	3.9
- 45 - 	U-14		 with silty fine sand partings, infille burrows with coarse subrounded gravel MARL, yellow-brown and gray, har 	El. 503.0; 4	4.5+	- · - · -					_ · _ ·	- · - · ·				
50 -	U-15		jointed, stained with limonite, weath	nered	4.5+					60	37	98	23	104	4.4	4.1
			continued on next page													
Comple Date B Date B	oring	Starte	d: 4/7/05	Remarks:	Boring Ground complet	water a	at 25 fe	eet 16	hours	after c	omple	tion. I	Boring	g not b	ailed a	
Engine	er / G	-			plug pla								Pierro	п. Del		
Project No.: 53882 The stratification lines represent approximate strata boundaries. In situ the transition may be gradual											oounda					

The stratification lines represent approximate strata boundaries. In situ, the transition may be gradual.

			LOG OF	BORIN	G N	0.1	B-0	1 (0	con	t'd))					
Projec Locati Surfac	ion:	•	tion: Ralph Hall Dam Station 25+00 +/- 550.0'	Preliminary -	- Ladoı	nia, T	'exas									
Depth	Samples	Symbol/USCS	MATERIAL DESC	RIPTION	Hand Penetrometer, TSF	Penetration Blows / Foot	Core Drilled, ft.	Core Recovered, %	Core RQD	Liquid Limit	Plasticity Index	% Passing No. 200 Sieve	Moisture Content, %	Unit Dry Weight, lb / cu ft	Unc. Compressive Strength, tsf	Strain at Failure, %
	T-16 C-17 C-18 C-18		MARL, gray to dark gray, hard,	El. 497.0; . unweathered	53.0'	86/ 11¼"	5.0 1.0 4.0	32 90 100	16 90 93	· _ · _ ·			18	113	· ·	
	C-20 C-21						5.0	42	42 76				16	114	19.6	3.4
	C-22		- with moderate to high angle sli	- with moderate to high angle slickenside												
 - 85 -				El. 465.0;	<u>85.0'</u>	- · - · -	5.0	0						- · ·		
Comple Date Bo Date Bo Enginee Project	oring oring er / G	Starte Comp	d: 4/7/05 leted: 4/7/05	Remarks:	Boring E Ground complet plug pla	water a ion of	at 25 fe drillin	eet 16 g. Bo	hours ring ba	after c ackfill	omple ed upo	tion. I	Boring	g not b	ailed a	

			LOG	OF BOI	RIN	GN	NO.	B-	02							
Projec Locat Surfac	ion:		tion: Ralph Hall Dam Pr Station 53+00 +/- 502.6'	eliminary -	Lador	nia, T	Texas									
Depth	Samples	Symbol/USCS			Hand Penetrometer, TSF	Penetration Blows / Foot	Core Drilled, ft.	Core Recovered, %	Core RQD	Liquid Limit	Plasticity Index	% Passing No. 200 Sieve	Moisture Content, %	Unit Dry Weight, lb/cu ft	Unc. Compressive Strength, tsf	Strain at Failure, %
	U-1 U-2 U-3 U-4 U-5		MATERIAL DESCRI CLAY, dark brown, brown, yellow- and gray, soft to very stiff - with occasional calcareous accretion	-brown	0.5 0.5 1.25 3.0 2.6											
	U-6 U-7		 with root filaments, with occasions sand pockets, with limonitic stains with sand infilled burrows 	al silty	2.75 3.8					61	43	96	22			
	U-8 U-9		 occasionally jointed below 19 feet with manganese dioxide stains 		3.0 3.4											
 - 25 -	U-10		CLAY, yellow-brown, gray and ligh firm, intercalated with fine to coarse subrounded sand partings and seams	e S	1.9	- · - · -				59	40	92	24			
 - 30 -	U-11		CLAY with sand, yellow-brown, gr light brown, firm, intercalated with coarse subrounded sand partings and	ay and fine to d seams EL 470.6; 32	1.0					57	35	75	25	102	0.9	3.4
	<u>U-12</u> C-13		MARL, dark gray, hard, jointed, occassionally fissile, unweathered	21. 10.0, 32	4.5+		5.0	66	98	57	36	95	12	127	22.3	2.4
40 — - 45 —	C-14						5.0	88	88				17	115		
- 43 - 	C-15 C-16						5.0	66 66	- 66							
Comple Date Bo Date Bo Engined Project	oring oring er / C No.:	Started Comp eologi	d: 4/6/05 leted: 4/6/05		Boring I feet. Bo feet belo	oring b ow gro	oackfill ound su	led upo irface.	on con	pletio	n. Be	ntonite				

The stratification lines represent approximate strata boundaries. In situ, the transition may be gradual.

	LOG OF BORING NO. B-02 (cont'd)																			
Projec Locat Surfac	ion:	-	otion:	-	Hall Dam 53+00 +/-		liminar	y - La	ador	nia, T	'exas									
Depth	Samples	Symbol/USCS	Γ	MATERI	AL DES	CRIP	TION		Hand Penetrometer, TSF	Penetration Blows / Foot	Core Drilled, ft.	Core Recovered, %	Core RQD	Liquid Limit	Plasticity Index	% Passing No. 200 Sieve	Moisture Content, %	Unit Dry Weight, lb / cu ft	Unc. Compressive Strength, tsf	Strain at Failure, %
			MARI	., dark gray, ionally fissil	hard, jointe e, unweathe	d, red											16	115		
- 55 - 	C-17										5.0	70	60				16	117		
- 60 -							El. 442	.6; 60.0'								- · - · -	- · - · -	- · - · -	· _ · _	· _ · _
Date Bo Date Bo Engine	Completion Depth:60 ft.Date Boring Started:4/6/05Date Boring Completed:4/6/05Engineer / Geologist:D. JamesProject No.:53882						Remarks:	fee	et. Bo		ackfill	ed upo	on con			red aft ntonite				
	к	LEI	NFE	LDER			The strati In situ, th	ficatio e trans	n line	s repre may be	sent a gradu	pproxi 1al.	mate s	strata ł	oounda	aries.				

			LOG	OF BOF	RIN	GN	NO.	B-	03							
Projec		escrip	-	eliminary - I	Ladoi	nia, T	exas									
Locati Surfac			Station 82+70 +/-													
Surfac		.:	506.3'													
Depth	Samples	Symbol/USCS	MATERIAL DESCRI	PTION	Hand Penetrometer, TSF	Penetration Blows / Foot	Core Drilled, ft.	Core Recovered, %	Core RQD	Liquid Limit	Plasticity Index	% Passing No. 200 Sieve	Moisture Content, %	Unit Dry Weight, lb/cu ft	Unc. Compressive Strength, tsf	Strain at Failure, %
	U-1		CLAY with sand, brown and dark b		4.5+											
	U-2 U-3 U-4 U-5		very stiff to hard, fill CLAY, light brown-gray with yello firm to stiff, mottled with limonite,	El. 503.3; 3. w-brown, with	4.5+ 0' 4.5+ 2.6	+				-54	37	92	20	- · _ · _		· _ · _
	U-6		weathered ironstone sand		1.5											
	U-7			El. 494.3; 12.	2.0											
	U-8		CLAYEY SAND, light gray-brown _↓ variegated, medium dense	and El. 491.8; 14.	T	+ · - · -	+ · — · – + · — · –		· _ · _		· _ · _ ·	_ · _ · -	- 25 -	100-	 1 .6-	6.9-
- 15 - 			MARL, yellow-brown and gray, hai jointed, fissile, with root invaded jo gypsum infills, weathered	rd, ints, with												
	U-9				4.5+								22	96	4.8	7.1
	- 10		MARL, dark gray, hard, jointed, oc	El. 483.3; 23. casionally	<u> </u>	+	+ · - · -	· _ · _	· _ · _		· _ · _ ·		- · · -	· - · -	· _ · _	· _ · _
	<u>T-10</u> C-11		fissile, unweathered			100/ 2½"	5.0	98	98				18	112	14.2	3.0
	C-12						5.0	68	66				18	112	22.1	2.3
- 35 - 	C-13						5.0	96	94				25	105		
- 40 - 	C-14						5.0	94	92							
	C-15						5.0	96	94				18	118		
 - 50 -	C-16						5.0	100	86				18	112		
	ł	<u>x/A\\\</u>	continued on next page		1						I					
Comple Date Bo Date Bo	oring oring	Started Comp	d: 4/9/05 leted: 4/9/05	r	Boring neasure Bentoni	ed at 14	4 feet o	during	. Bori	ng bac	ckfille	d upon	comp			
Enginee Project		eologi	st: D. James 53882													
h-	ĸ	IFI	NFFLDFR	The stratificati	on line	s repre	esent a	pproxi	mate s	strata l	oounda	aries.				

The stratification lines represent approximate strata boundaries In situ, the transition may be gradual.

				LC	OG OF I	BORIN	G N	0.1	B-0	3 (0	on	t'd))					
Projec Locat	ion:	-	otion:	Station 8		eliminary -	Lador	nia, T	exas									
Surfac	ce E	l.:		506.3'												1		
Depth	Samples	Symbol/USCS			L DESCRI		Hand Penetrometer, TSF	Penetration Blows / Foot	Core Drilled, ft.	Core Recovered, %	Core RQD	Liquid Limit	Plasticity Index	% Passing No. 200 Sieve	Moisture Content, %	Unit Dry Weight, lb / cu ft	Unc. Compressive Strength, tsf	Strain at Failure, %
			MARL fissile,	., dark gray, h unweathered	ard, jointed, oc	casionally												
- 55 -	C-17								5.0	86	78							
 - 60 -	C-17		- with	high angle joi phosphatic sau y weakly cem	nt or slickensid nd, well indura ented	les ted, El. 446.3; 60	0.0'		5.0	80	78				19	111	9.5	2.8
Comple				60 ft.		Remarks:	Boring											
Date Bo Date Bo Engined Project	oring oring er / G	Starte Comp leologi	d: leted: .st:	4/9/05 4/9/05 D. James 53882			measure Bentoni	ed at 14 te plug	4 feet o g place	luring. d 1 to	Borin 2 feet	ng bac below	kfilled grour	l upon Id surfa	comp			
	К	LEI	NFE	LDER		The stratifica In situ, the tra	tion line	s repre may be	esent ag e gradu	pproxi 1al.	mate s	trata t	oounda	ries.				

			LOG	OF BO	RIN	GN	NO.	B-	04							
Projec		escrip	-	eliminary ·	- Ladoı	nia, T	lexas	5								
Locat			Northend													
Surfac	ce E	l.:	564.2'								-			1		
Depth	Samples	Symbol/USCS	MATERIAL DESCRI	PTION	Hand Penetrometer, TSF	Penetration Blows / Foot	Core Drilled, ft.	Core Recovered, %	Core RQD	Liquid Limit	Plasticity Index	% Passing No. 200 Sieve	Moisture Content, %	Unit Dry Weight, lb / cu ft	Unc. Compressive Strength, tsf	Strain at Failure, %
- 0 -	U-1	/////	SANDY CLAY, brown and light br		1.9											
	U-2 U-3 U-4		to very stiff, with silty fine sand, int joints	filled EL 561.0:	1.2				· _ · _					 	· _ · _	
	U-5		CLAY, brown, yellow-brown and li brown-gray, hard, with iron oxide a limonitic stains - with calcareous accretions (caliche	ccretions,	4.5+											
	U-6 U-7		4.5 feettransition to light brown-gray and yellow-brown, with sand clasts below	ow 7 feet	4.5+ 4.5+					64	44	91	19			
 - 15 -	U-8		MARL, yellow-brown and light gra jointed, occasionally fissile, limonit stained, weathered	El. 552.2; y, hard, ic	4.5+	- · - · -	- · - · -	- · _ · _					27	97		
	U-9				4.5+								21	107		
 - 25 - 	U-10		- with gypsum accretion and infilled	d joints	4.5+								22	104		
- 30 - - 30 -	U-11				4.5+								22	102		
- 35 - - 35 -	U-12				4.5+								22	109		
 - 40 -	U-13		 with dark gray unweathered seams 37 feet MARL, dark gray, hard, jointed, ind 	El. 524.2;	40.0 4.5+		 	 ··_					21	105_		
	U-14		occasionally fissile, unweathered	iurateu,	4.5+								22	100		
45 — - 50 —	C-15						5.0	30 50	- 30				21	107		
			continued on next page													
Comple Date Bo Date Bo Engine Project	oring oring er / G	Starte Comp	d: 4/8/05 leted: 4/8/05	Remarks:	Boring Boring below g	oackfil	led up	on coi								ırs.
			NEELDER	The stratific	ation line	s repre	esent a	pproxi	mate	strata l	oound	aries.				

Г

The stratification lines represent approximate strata boundaries. In situ, the transition may be gradual.

				L	.OG	OF I	BOR	ING	N	0.1	B-0	4 (a	con	t'd))					
Projec Locat Surfac	ion:	-	otion:	Ralph Northe 564.2'		am Pro	elimina	ry - L	ador	nia, T	'exas									
Depth	Samples	Symbol/USCS	N	IATER	IAL DI	ESCRI	PTION	I	Hand Penetrometer, TSF	Penetration Blows / Foot	Core Drilled, ft.	Core Recovered, %	Core RQD	Liquid Limit	Plasticity Index	% Passing No. 200 Sieve	Moisture Content, %	Unit Dry Weight, lb/cu ft	Unc. Compressive Strength, tsf	Strain at Failure, %
			MARL,	dark gray nally fissil	, hard, joi	nted, ind														
- 55 -	C-17										5.0	54	34				22	105		
 - 60 - 	T-18									100/ 3"										
 - 65 - 	T-19									100/ 1"										
 - 70 - 	T-20									100/ 2¼"										
 - 75 - 	T-21									100/ 2"										
	T-22									100/ 1½"										
 - 85 -	T-23									100/ 1¾"										
 - 90 - 	T-24									100/ 1¾"										
 - 95 - 	T-25 C-26									100/ 1½"	5.0	0	-							
- 100 -							El. 464	4.2; 100.0'		 										
Comple Date B Date B Engine Project	oring oring er / G No.:	Starte Comp eologi	d: 4 leted: 4 st: 1	100 ft. 4/8/05 4/8/05 D. James 53882			Remarks	Bo be	oring l low g	backfil round	led up surfac	on coi e.	npletio	on. Be	ntonit	ared at e plug				ırs.

The stratification lines represent approximate strata boundaries In situ, the transition may be gradual.

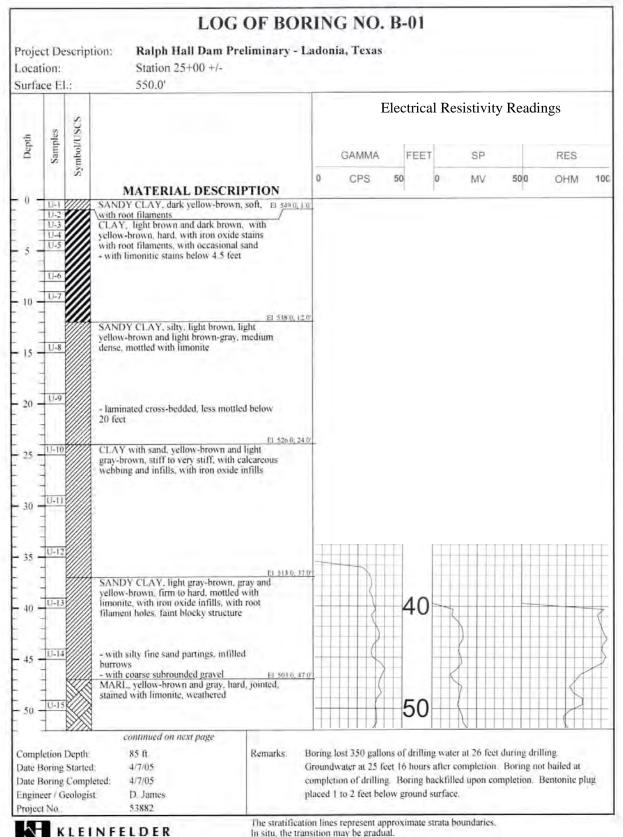
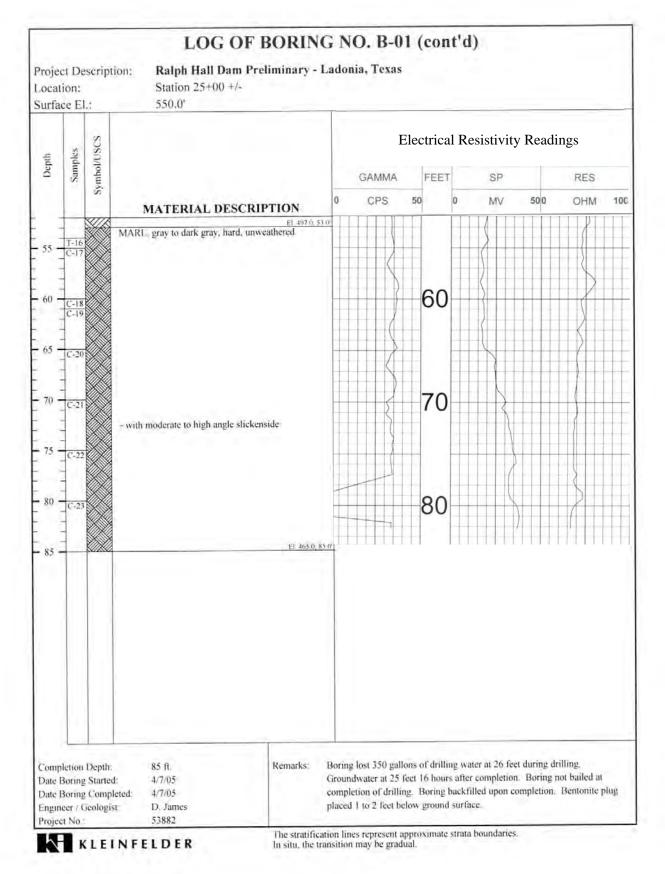
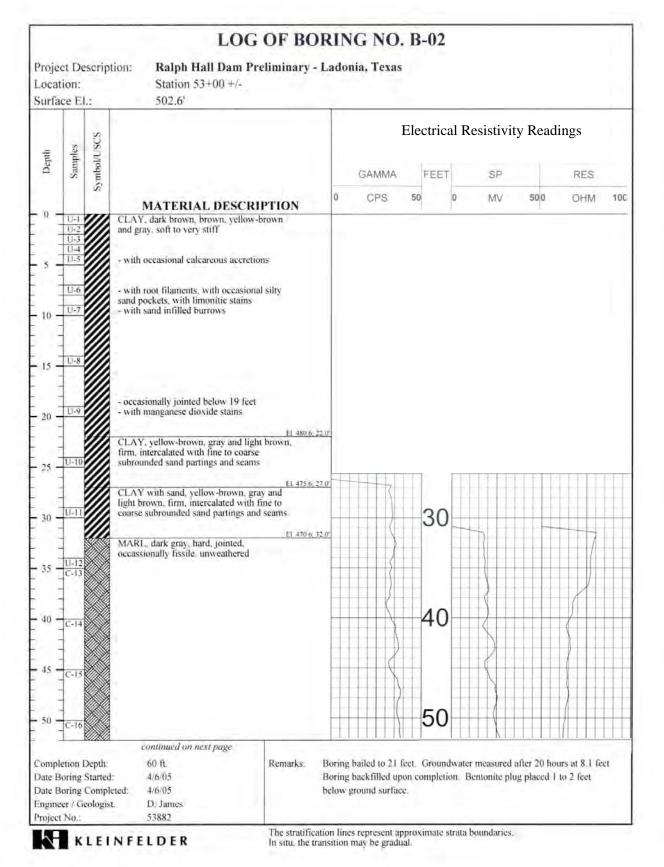
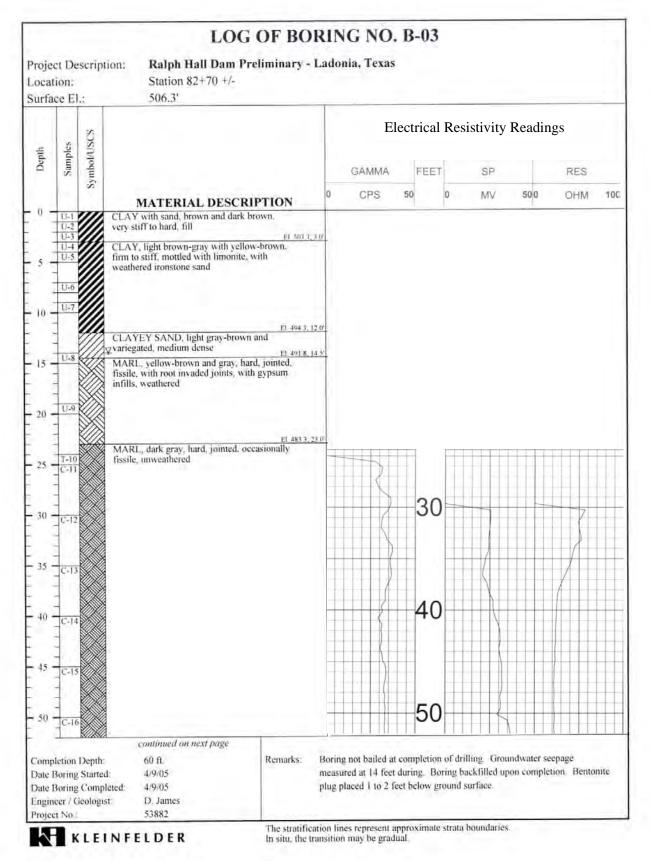
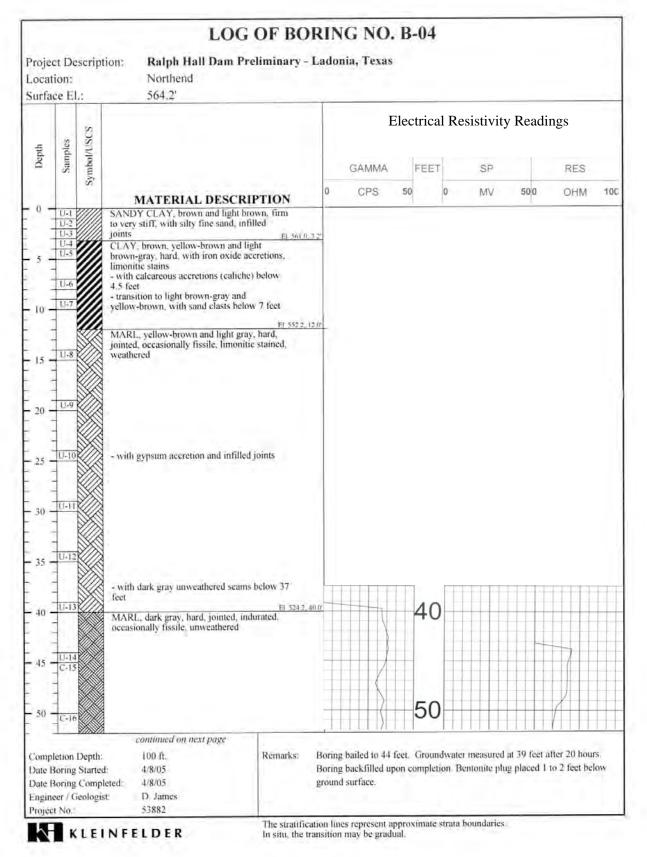
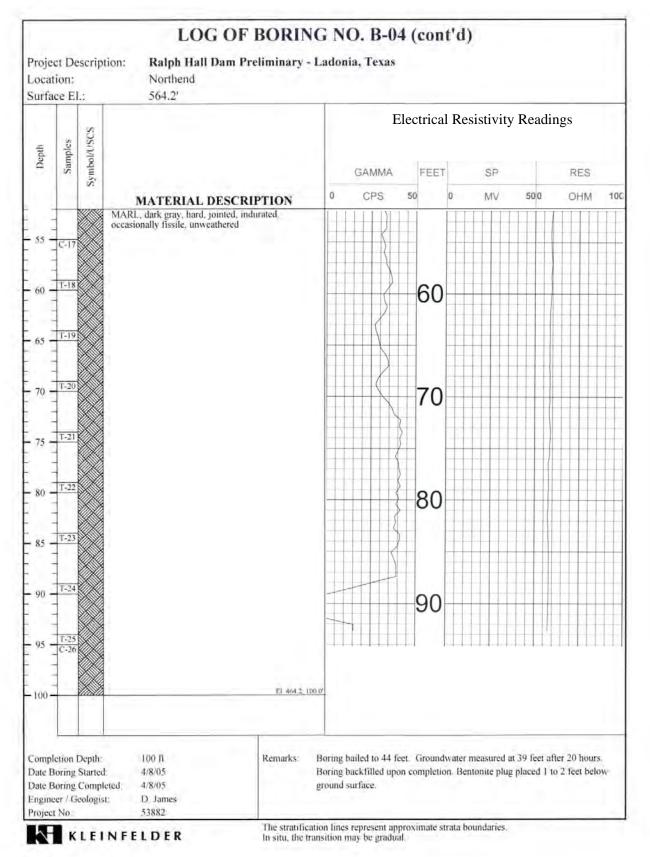


Plate 8a

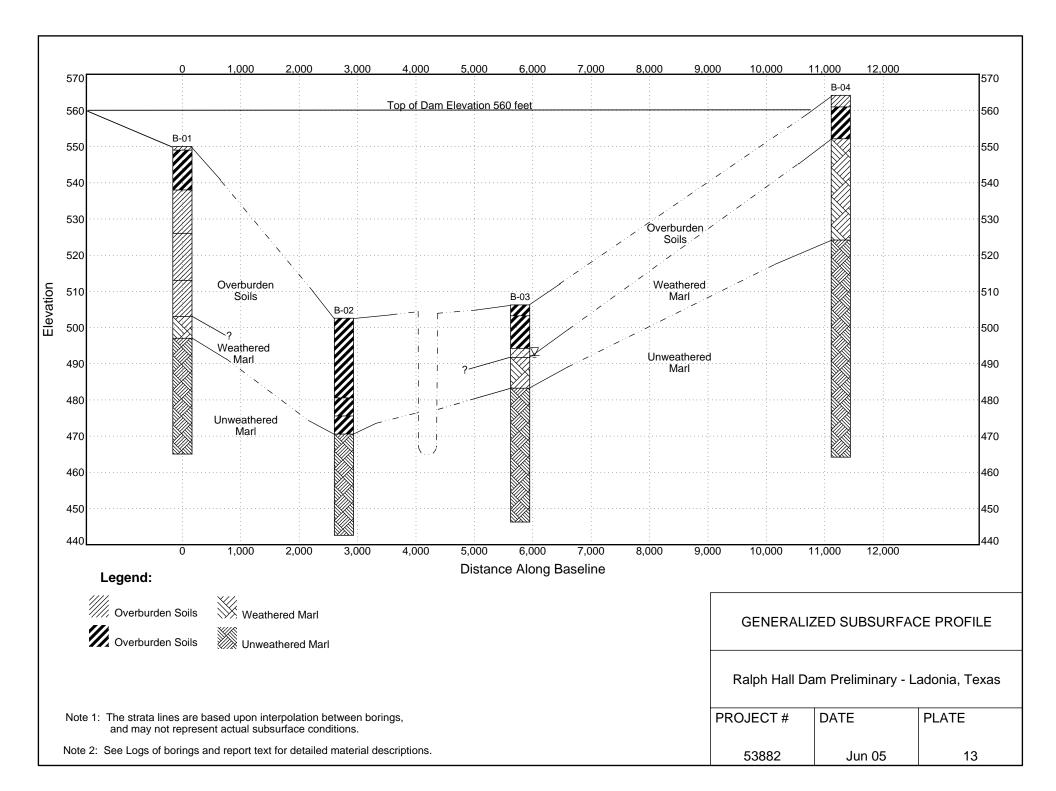




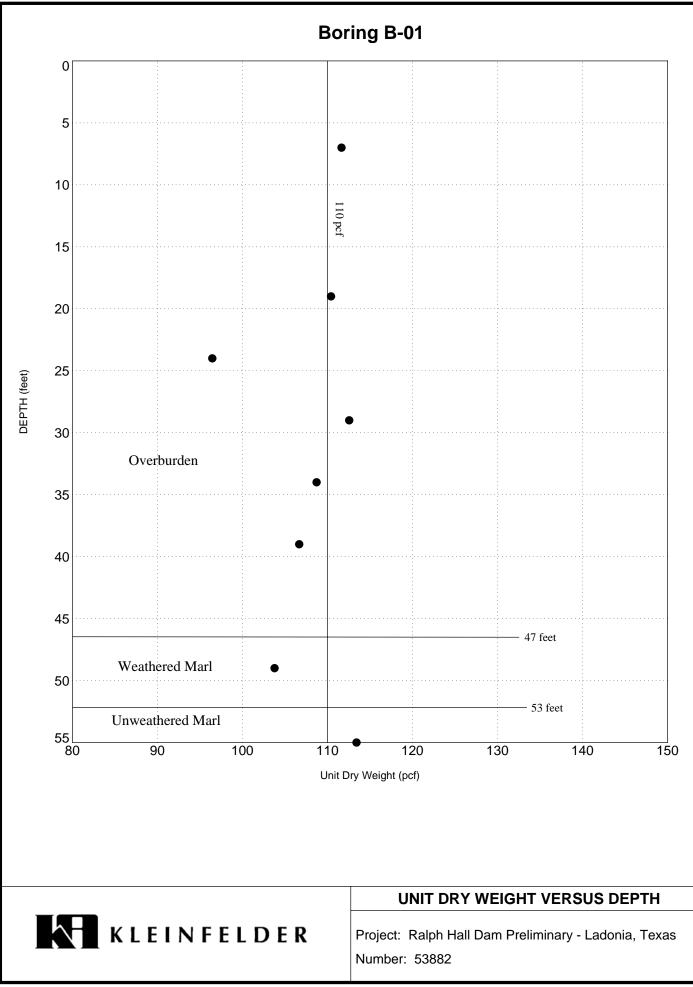

Plate 8b

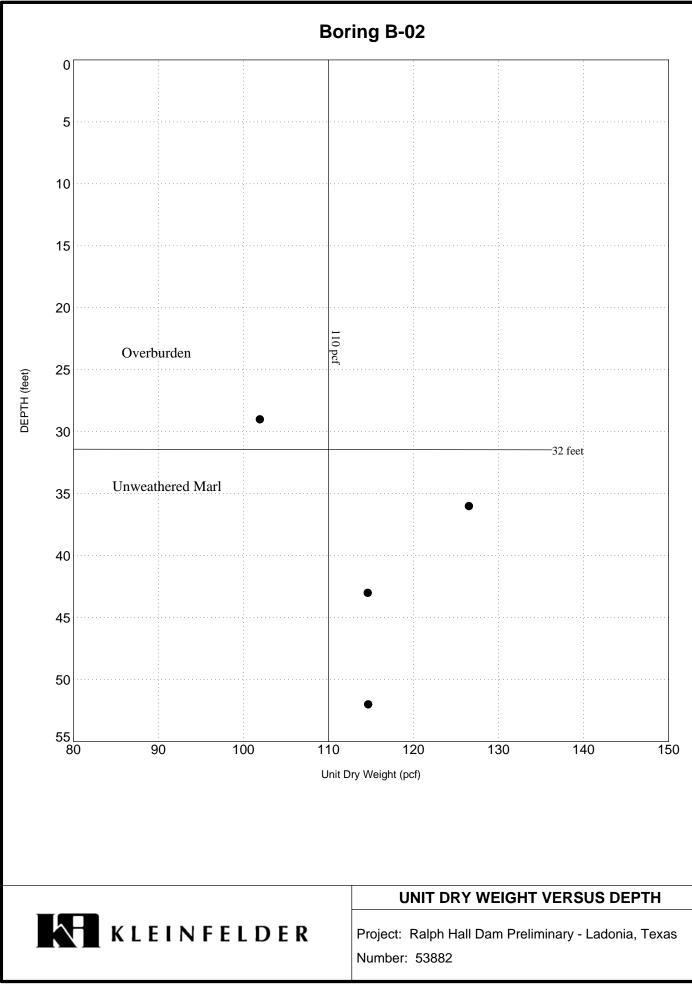


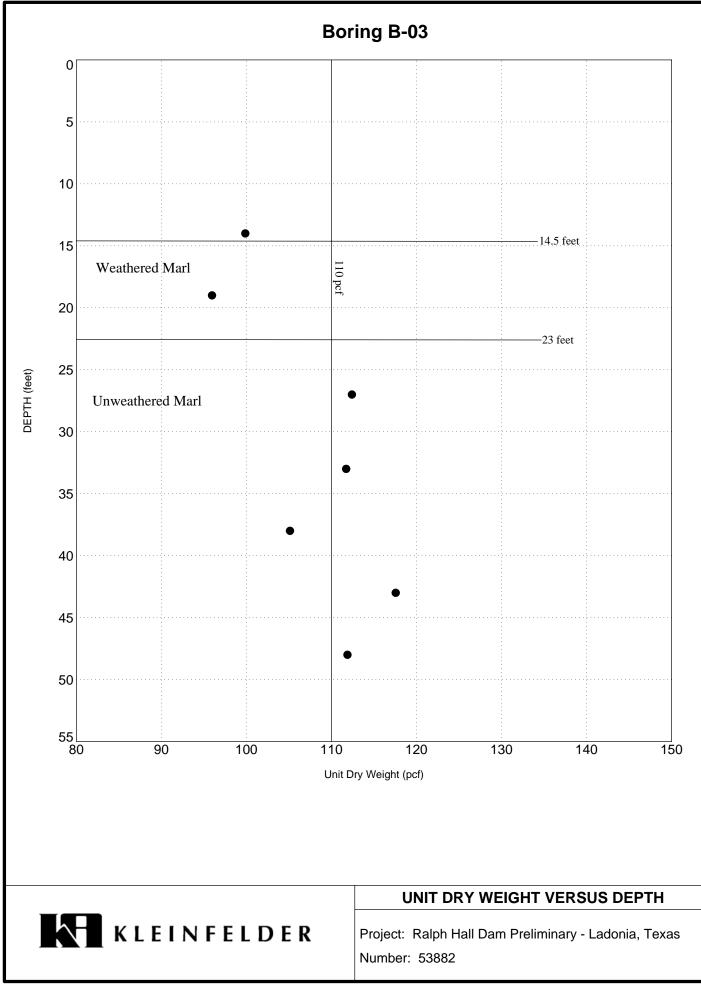
			LOG OF	BORIN	G NO. B-02 (cont'd)
Projec Locat Surfac	ion:	script	ion: Ralph Hall Dam Pr Station 53+00 +/- 502.6'	eliminary -	Ladonia, Texas
Depth	Samples	Symbol/USCS			Electrical Resistivity Readings GAMMA FEET SP RES 0 CPS 50 0 MV 500 OHM 100
- 55	C-17		MATERIAL DESCR	EI 442.6; Ø	
Date B Date B	toring toring cer / G	Depth: Startec Compl cologis	eted: 4/6/05	Remarks:	Boring bailed to 21 feet. Groundwater measured after 20 hours at 8.1 feet. Boring backfilled upon completion. Bentonite plug placed 1 to 2 feet below ground surface.

			LOG OI	F BORING	G NG), B-0)3 (c	ont'd)			
Projec Locat Surfac	ion:		tion: Ralph Hall Dam I Station 82+70 +/- 506.3'	Preliminary - L	adoni	a, Texas	0					
						H	Electri	ical Re	sistivity	Readi	ngs	
Depth	Samples	Symbol/USCS				GAMMA	F	EET	SP		RES	
	1		MATERIAL DESCI	RIPTION	0	CPS	50	0	MV	500	OHM	100
- 55 -	C-17		MARL, dark gray, hard, jointed, o fissile, unweathered - with high angle joint or slickens - with phosphatic sand, well indu slightly weakly cemented	occasionally				60				
Compl Date B Date B Engine Project	oring oring er / G	Started Compl	eted: 4/9/05	-0	neasure		during.	Boring ba			epage ion. Benton	ite




								She	et 1 of 1
Boring No.	Sample Depth (ft.)	Liquid Limit	Plastic Limit	Plasticity Index	Percent Passing No. 200 Sieve	Moisture Content (%)	Unit Dry Weight (pcf)	Unconfined Compressive Strength (tsf)	Strain at Failure (%)
B-01	7.0 - 8.0					15	112	7.8	1.7
B-01	9.0 - 10.0	52	17	35	89	17			
B-01	14.0 - 15.0	40	19	21	63	13			
B-01	19.0 - 20.0					17	110		
B-01	24.0 - 25.0	35	21	14	86	18	96		
B-01	29.0 - 30.0					18	113	4.3	7.8
B-01	34.0 - 35.0					19	109		
B-01	39.0 - 40.0	31	22	9	67	21	107	0.9	3.9
B-01	49.0 - 50.0	60	23	37	98	23	104	4.4	4.1
B-01	55.0 - 60.0					18	113		
B-01	62.1 - 62.5					16	114	19.6	3.4
B-02	7.0 - 8.0	61	18	43	96	22			
B-02	24.0 - 25.0	59	19	40	92	24			
B-02	29.0 - 30.0	57	22	35	75	25	102	0.9	3.4
B-02	36.0 - 36.5	57	21	36	95	12	127	22.3	2.4
B-02	43.0 - 43.5					17	115		
B-02	52.0 - 52.5					16	115		
B-02	57.0 - 57.5					16	117		
B-03	3.0 - 4.0	54	17	37	92	20			
B-03	14.0 - 15.0					25	100	1.6	6.9
B-03	19.0 - 20.0					22	96	4.8	7.1
B-03	27.0 - 27.5					18	112	14.2	3.0
B-03	33.0 - 33.5					18	112	22.1	2.3
B-03	38.0 - 38.5					25	105		
B-03	43.0 - 43.5					18	118		
B-03	48.0 - 48.5					18	112		
B-03	56.0 - 56.5					19	111	9.5	2.8
B-04	9.0 - 10.0	64	20	44	91	19			
B-04	14.0 - 15.0					27	97		
B-04	19.0 - 20.0					21	107		
B-04	24.0 - 25.0					22	104		
B-04	29.0 - 30.0					22	102		
B-04	34.0 - 35.0					22	109		
B-04	39.0 - 40.0					21	105		
B-04	44.0 - 45.0					22	100		
B-04	45.0 - 50.0					21	107		
B-04	55.0 - 60.0					22	105		


Summary of Laboratory Results


KLEINFELDER

Project: Ralph Hall Dam Preliminary - Ladonia, Texas Project Number: 53882

